Question
Mathematics Question on Determinants
If A=3 2 0−3−3−1441 , then A−1 equal to:
A
A2
A3
A4
A3
Solution
Given: A=3 2 0−3−3−1441 ⇒ ∣A∣=3 2 0−3−3−1441 ⇒ ∣A∣=3(−3+4)+3(2−0)+4(−2) =3+6−8=1 ⇒ ∣A∣=1=0 Thus A is non singular matrix and therefore it is invertible. Let cij be cofactor of aij in A. Then c11=−3 −141=−3+4=1 c12=−2 041=−2, c13=2 0−3−1=−2 c21=−−3 −141=−(−3+4)=−1 c22=3 041=3 c23=−3 0−3−1=−(−3)=3 c31=−3 −344=0 c32=3 244=−(12−8)=−4, c33=3 2−3−3=9+6=−3 ∴ adjA=1 −1 0−23−4−23−3T=1 −2 −2−1330−4−3 ⇒A−1=∣A∣1adjA =1 −2 −2−1330−4−3....(1) Now, A2=3 2 0−3−3−14413 2 0−3−3−1441 [∵A2=A.A] =9−6 6−6 −2−9+9−4−6+9−43−112−12+48−12+4−4+1=3 0 −2−4−1240−3 and A3=A2.A =3 0 −2−4−1240−33 2 0−3−3−1441 ⇒A3=9−8 −2 −6+4−9+12−436−6+312−16+4−4−8+8−3 =1 −2 −2−1330−4−3 ....(2) from equation (1) and (2), we have A−1=A3