Solveeit Logo

Question

Mathematics Question on Determinants

If A=[334 234 011]A = \begin{bmatrix}3&-3&4\\\ 2&-3&4\\\ 0&-1&1\end{bmatrix} , then A1A^{-1} equal to:

A

AA

B

A2A^2

C

A3A^3

D

A4A^4

Answer

A3A^3

Explanation

Solution

Given: A=[334 234 011]A = \begin{bmatrix}3&-3&4\\\ 2&-3&4\\\ 0&-1&1\end{bmatrix}  A=334 234 011\Rightarrow \ |A| = \begin{vmatrix}3&-3&4\\\ 2&-3&4\\\ 0&-1&1\end{vmatrix}  A=3(3+4)+3(20)+4(2)\Rightarrow \ |A| =3 (- 3 + 4) + 3(2 - 0) + 4(- 2) =3+68=1= 3 + 6- 8 = 1  A=10\Rightarrow \ |A| = 1 \neq 0 Thus A is non singular matrix and therefore it is invertible. Let cijc_{ij} be cofactor of aija_{ij} in A. Then c11=34 11=3+4=1c_{11} = \begin{vmatrix}-3&4\\\ -1&1\end{vmatrix} = -3 + 4 = 1 c12=24 01=2,c_{12} = - \begin{vmatrix}2&4\\\ 0&1\end{vmatrix}= - 2, c13=23 01=2c_{13} = \begin{vmatrix}2&-3\\\ 0&-1\end{vmatrix} = -2 c21=34 11=(3+4)=1 \text{c}_{21} = - \begin{vmatrix}-3&4\\\ -1&1\end{vmatrix}= - \left(-3+4\right) = - 1 c22=34 01=3 c_{22} = \begin{vmatrix}3&4\\\ 0&1\end{vmatrix} = 3 c23=33 01=(3)=3 c_{23} = - \begin{vmatrix}3&-3\\\ 0&-1\end{vmatrix} = -\left(-3\right) = 3 c31=34 34=0 c_{31} = \begin{vmatrix}-3&4\\\ -3&4\end{vmatrix} = 0 c32=34 24=(128)=4,c_{32} = \begin{vmatrix}3&4\\\ 2&4\end{vmatrix} = -\left(12-8\right)= -4, c33=33 23=9+6=3c_{33} = \begin{vmatrix}3&-3\\\ 2&-3\end{vmatrix} = 9 + 6 = - 3  adjA=[122 133 043]T=[110 234 233]\therefore \ adj A = \begin{bmatrix}1&-2&-2\\\ -1&3&3\\\ 0&-4&-3\end{bmatrix} ^{T} = \begin{bmatrix}1&-1&0\\\ -2&3&-4\\\ -2&3&-3\end{bmatrix} A1=1AadjA \Rightarrow A^{-1} = \frac{1}{\left|A\right|} adj A =[110 234 233]....(1)= \begin{bmatrix}1&-1&0\\\ - 2&3&-4\\\ -2&3&-3\end{bmatrix} ....\left(1\right) Now, A2=[334 234 011][334 234 011]A^{2} = \begin{bmatrix}3&-3&4\\\ 2&-3&4\\\ 0&-1&1\end{bmatrix} \begin{bmatrix}3&-3&4\\\ 2&-3&4\\\ 0&-1&1\end{bmatrix} [A2=A.A]\left[\because A^{2} = A.A\right] =[969+941212+4 666+94812+4 2314+1]=[344 010 223]= \begin{bmatrix}9-6&-9+9-4&12-12+4\\\ 6-6&-6+9-4&8-12+4\\\ -2&3-1&-4+1\end{bmatrix} = \begin{bmatrix}3&-4&4\\\ 0&-1&0\\\ -2&2&-3\end{bmatrix} and A3=A2.AA^{3} = A^{2} .A =[344 010 223][334 234 011]= \begin{bmatrix}3&-4&4\\\ 0&-1&0\\\ -2&2&-3\end{bmatrix} \begin{bmatrix}3&-3&4\\\ 2&-3&4\\\ 0&-1&1\end{bmatrix} A3=[989+1241216+4 234 6+466+38+83]\Rightarrow A^{3} = \begin{bmatrix}9-8&-9+12-4&12-16+4\\\ -2&3&-4\\\ -6+4&6-6+3&-8+8-3\end{bmatrix} =[110 234 233]= \begin{bmatrix}1&-1&0\\\ -2&3&-4\\\ -2&3&-3\end{bmatrix} ....(2) from equation (1) and (2), we have A1=A3A^{-1} = A^3