Solveeit Logo

Question

Mathematics Question on Determinants

If A=[32 45]A = \begin{bmatrix}3&2\\\ 4&5\end{bmatrix} and AC=[1924 3746]AC = \begin{bmatrix}19&24\\\ 37&46\end{bmatrix} then C=C=

A

[34 52]\begin{bmatrix}3&4\\\ 5&2\end{bmatrix}

B

[34 53]\begin{bmatrix}3&4\\\ 5&3\end{bmatrix}

C

[34 56]\begin{bmatrix}3&4\\\ 5&6\end{bmatrix}

D

[34 55]\begin{bmatrix}3&4\\\ 5&5\end{bmatrix}

Answer

[34 56]\begin{bmatrix}3&4\\\ 5&6\end{bmatrix}

Explanation

Solution

We have, A=(32 45)AC=(1924 3746)A = \begin{pmatrix}3&2\\\ 4&5\end{pmatrix} AC = \begin{pmatrix}19&24\\\ 37&46\end{pmatrix}
Since , A0    A1|A| \neq 0 \ \ \therefore \ \ A^{-1} exists
Multiplying by A1A^{-1} on both sides of ACAC, we get
A1AC=A1(1924 3746)A^{-1} AC = A^{-1} \begin{pmatrix}19&24\\\ 37&46\end{pmatrix}
C=adjAA(1924 3746)   [ A1=adjAA]C = \frac{adj A}{\left|A\right|} \begin{pmatrix}19&24\\\ 37&46\end{pmatrix} \ \ \ \left[ \because \ A^{-1} =\frac{adj A}{\left|A\right|} \right]
C=17(52 43)(1924 3746)\Rightarrow C = \frac{1}{7} \begin{pmatrix}5 &-2\\\ -4&3\end{pmatrix} \begin{pmatrix}19&24\\\ 37&46\end{pmatrix}
C=17(957412092 76+11196+138)\Rightarrow C = \frac{1}{7} \begin{pmatrix}95-74&120-92\\\ -76+111&-96+138\end{pmatrix}
C=17(2128 3542)C=(34 56)\Rightarrow C = \frac{1}{7} \begin{pmatrix}21&28\\\ 35&42\end{pmatrix} \Rightarrow C = \begin{pmatrix}3&4\\\ 5&6\end{pmatrix}