Solveeit Logo

Question

Mathematics Question on Matrices

If A=[32\42]\begin{bmatrix}3&-2\\\4&-2\end{bmatrix} and I=[10\01]\begin{bmatrix}1&0\\\0&1\end{bmatrix},find k so that A2=kA-2I

Answer

A2=A.A

\begin{bmatrix}3&-2\\\4&-2\end{bmatrix}$$\begin{bmatrix}3&-2\\\4&-2\end{bmatrix}

=[3(3)+(2)(4)3(2)+(2)(2)\4(3)+(2)(4)4(2)+(2)(2)]\begin{bmatrix}3(3)+(-2)(4)&3(-2)+(-2)(-2)\\\4(3)+(-2)(4)&4(-2)+(-2)(-2)\end{bmatrix}=[12\44]\begin{bmatrix}1&-2\\\4&-4\end{bmatrix}

Now A2=kA-2I
[12\44]\Rightarrow \begin{bmatrix}1&-2\\\4&-4\end{bmatrix}=[32\42]\begin{bmatrix}3&-2\\\4&-2\end{bmatrix}-2[10\01]\begin{bmatrix}1&0\\\0&1\end{bmatrix}

\Rightarrow [12\44]\begin{bmatrix}1&-2\\\4&-4\end{bmatrix}=[3k2k\4k2k]\begin{bmatrix}3k&-2k\\\4k&-2k\end{bmatrix}-2[10\01]\begin{bmatrix}1&0\\\0&1\end{bmatrix}

\Rightarrow [12\44]\begin{bmatrix}1&-2\\\4&-4\end{bmatrix}=[3k22k\4k2k2]\begin{bmatrix}3k-2&-2k\\\4k-2k&-2\end{bmatrix}
Comparing the corresponding elements, we have:
3k-2=1
3k=2
\Rightarrow k=1

Thus, the value of k is 1.