Question
Mathematics Question on Matrices
If A=[3\4−2−2] and I=[1\001],find k so that A2=kA-2I
Answer
A2=A.A
\begin{bmatrix}3&-2\\\4&-2\end{bmatrix}$$\begin{bmatrix}3&-2\\\4&-2\end{bmatrix}
=[3(3)+(−2)(4)\4(3)+(−2)(4)3(−2)+(−2)(−2)4(−2)+(−2)(−2)]=[1\4−2−4]
Now A2=kA-2I
⇒[1\4−2−4]=[3\4−2−2]-2[1\001]
⇒ [1\4−2−4]=[3k\4k−2k−2k]-2[1\001]
⇒ [1\4−2−4]=[3k−2\4k−2k−2k−2]
Comparing the corresponding elements, we have:
3k-2=1
3k=2
⇒ k=1
Thus, the value of k is 1.