Question
Mathematics Question on Determinants
If A=3−112,show that A2-5A+7I=0.Hence find A-1.
Answer
Given A=3−112
A2=A.A =\begin{bmatrix}3&1\\\\-1&2\end{bmatrix}$$\begin{bmatrix}3&1\\\\-1&2\end{bmatrix} =9−1−3−23+2−1+4=8−553
therefore LHS=A2-5A+7I
⇒8−553-53−112+7[1\001]
=8−553-15−5510+[7\007]
=[−7\00−7]+[7\007] =0
=RHS
So A2-5A+7I=0
therefore A. A-5A=-7I
⇒ A. A(A-1)-5A(A-1)=-7I(A-1) [post multiplying by A-1 as IAI≠0]
⇒ A(AA-1)-5I=-7I(A-1)
⇒ AI-5I=-7A-1
⇒ A-1=-71(A-5I)
⇒ A-1=71(5I-A)
=741 \bigg($$\begin{bmatrix}5&0\\\0&5\end{bmatrix}-\begin{bmatrix}3&1\\\\-1&2\end{bmatrix}$$\bigg)=71[2\1−13]
∴ A-1=71[2\1−13]