Question
Mathematics Question on Matrices
If A= [3 −112] show that A2-5A+7I=0
Answer
Given A=[3 −112]
A2=A.A =\begin{bmatrix} 3 & 1 \\\ -1 & 2 \end{bmatrix}$$\begin{bmatrix} 3 & 1 \\\ -1 & 2 \end{bmatrix}
= [3(3)+1(−1) −1(3)+2(−1)3(1)+1(2)−1(1)+2(2)]
= [9−1 −3−23+2−1+4]= [8 −553]
∴ LHS=A2-5A+7I
⇒ \begin{bmatrix} 8 & 5 \\\ -5 & 3 \end{bmatrix}$$-5\begin{bmatrix} 3 & 1 \\\ -1 & 2 \end{bmatrix}$$+7\begin{bmatrix} 1 & 0 \\\ 0 & 1 \end{bmatrix}
⇒ \begin{bmatrix} -7 & 0 \\\ 0 & -7 \end{bmatrix}$$+\begin{bmatrix} 7 & 0 \\\ 0 & 7 \end{bmatrix}
⇒ [0 000]
= 0 =R.H.S
∴A2−5A+7I=O