Solveeit Logo

Question

Mathematics Question on Matrices

If A =[24\43]\begin{bmatrix}2 & 4 \\\4 & 3 \end{bmatrix} , X =[n\1]\begin{bmatrix}n \\\1 \end{bmatrix},B =[8\11]\begin{bmatrix}8 \\\11 \end{bmatrix},and AX = B, then the value of n will be:

A

0

B

1

C

2

D

not defined

Answer

2

Explanation

Solution

Solution: We are solving the equation AX = B, where:

A=[24 43],X=[n 1],B=[8 11].A = \begin{bmatrix} 2 & 4 \\\ 4 & 3 \end{bmatrix}, \quad X = \begin{bmatrix} n \\\ 1 \end{bmatrix}, \quad B = \begin{bmatrix} 8 \\\ 11 \end{bmatrix}.

Substitute X into AX:

[24 43][n 1]=[2n+4 4n+3].\begin{bmatrix} 2 & 4 \\\ 4 & 3 \end{bmatrix} \begin{bmatrix} n \\\ 1 \end{bmatrix} = \begin{bmatrix} 2n + 4 \\\ 4n + 3 \end{bmatrix}.

Equate with B:

[2n+4 4n+3]=[8 11].\begin{bmatrix} 2n + 4 \\\ 4n + 3 \end{bmatrix} = \begin{bmatrix} 8 \\\ 11 \end{bmatrix}.

From the first equation:

2n+4=82n=4n=2.2n + 4 = 8 \quad \Rightarrow \quad 2n = 4 \quad \Rightarrow \quad n = 2.

Verify with the second equation:

4n+3=114(2)+3=11,4n + 3 = 11 \quad \Rightarrow \quad 4(2) + 3 = 11, which is true.

Thus, n=2.n = 2.