Question
Mathematics Question on Determinants
If A=2\3\13215−4−2,find A-1.UsingA-1 solve the system of equations
2x-3y+5z=11
3x+2y-4z=-5
x+y-2z=-3
Answer
A=2\3\13215−4−2
∴ |A|=2(+4+4)+3(-6+4)+5(3-2)=0-6+5=-1≠0
Now, A11=0, A12=2, A13=1
A21=-1, A22=-9, A23=-5
A31=2. A32=23, A33=13
∴ A-1=∣A∣1(adj A)=-0\2\1−1−9−522313=0−2−1195−2−23−13 ...(1)
Now, the given system of equations can be written in the form of AX=B, where
A=2\3\13215−4−2,X=x\y\z and B=11−5−3
The solution of the system of equations is given by X=A-1 B
X=A-1 B
⇒x\y\z=\begin{bmatrix}0&1&-2\\\\-2&9&-23\\\\-1&5&-13\end{bmatrix}$$\begin{bmatrix}11\\\\-5\\\\-3\end{bmatrix} [using(1)]
=0−5+6−22−45+69−11−25+39 =1\2\3
Hence x=1,y=2 and z=3.