Solveeit Logo

Question

Mathematics Question on Determinants

If A=[23 52]A = \begin{bmatrix}2&3\\\ 5&-2\end{bmatrix} be such that A1=kA,A^{-1} = kA, then kk is equal to

A

1919

B

119\frac{1}{19}

C

19-19

D

119- \frac {1}{19}

Answer

119\frac{1}{19}

Explanation

Solution

Given, A=[23 52]A=\left[\begin{matrix}2&3\\\ 5&-2\end{matrix}\right]
A1=1415[23 52]\therefore A^{-1}=\frac{1}{-4-15}\left[\begin{matrix}-2&-3\\\ -5&2\end{matrix}\right]
=119[23 52]=119[23 52]=\frac{-1}{19}\left[\begin{matrix}-2&-3\\\ -5&2\end{matrix}\right]=\frac{1}{19}\left[\begin{matrix}2&3\\\ 5&-2\end{matrix}\right]
[multiplying 1-1 each element of a matrix]
=119A=\frac{1}{19}A
Given, A1=kAA^{-1}=kA
k=119\therefore k=\frac{1}{19}