Question
Mathematics Question on Matrices
If A=[2 13−4] and B=[1 −1−23], then B−1A−1 is equal to:
A
−111[14 551]
B
111[15 1110]
C
111[14 551]
D
−111[15 1110]
Answer
111[14 551]
Explanation
Solution
First, compute the inverses of A and B :
The determinant of A is:
det(A)=(2)(−4)−(3)(1)=−8−3=−11.
The inverse of A is:
A−1=−111[−4 −1−32]=111[4 13−2].
The determinant of B is:
det(B)=(1)(3)−(−2)(−1)=3−2=1.
The inverse of B is:
B−1=11[3 121]=[3 121].
Now compute B−1A−1:
B−1A−1=[3 121]⋅111[4 13−2].
Perform the matrix multiplication:
[3 121]⋅[4 13−2]=[(3)(4)+(2)(1) (1)(4)+(1)(1)(3)(3)+(2)(−2)(1)(3)+(1)(−2)].
=[12+2 4+19−43−2]=[14 551].
Thus:
B−1A−1=111[14 551].