Solveeit Logo

Question

Mathematics Question on Determinants

If A=[211121\112]\begin{bmatrix}2&-1&1\\\\-1&2&-1\\\1&-1&2\end{bmatrix}verify that A3-6A2+9A-4 I=0 and hence find A-1

Answer

A=[211121\112]\begin{bmatrix}2&-1&1\\\\-1&2&-1\\\1&-1&2\end{bmatrix}

A2=\begin{bmatrix}2&-1&1\\\\-1&2&-1\\\1&-1&2\end{bmatrix}$$\begin{bmatrix}2&-1&1\\\\-1&2&-1\\\1&-1&2\end{bmatrix}

=[4+1+12212+1+22211+4+1122\2+1+21221+1+4]\begin{bmatrix}4+1+1&-2-2-1&2+1+2\\\\-2-2-1&1+4+1&-1-2-2\\\2+1+2&-1-2-2&1+1+4\end{bmatrix}

=[655565\556]\begin{bmatrix}6&-5&5\\\\-5&6&-5\\\5&-5&6\end{bmatrix}

A3=A2. A

=\begin{bmatrix}6&-5&5\\\\-5&6&-5\\\5&-5&6\end{bmatrix}$$\begin{bmatrix}2&-1&1\\\\-1&2&-1\\\1&-1&2\end{bmatrix}

=[12+5+561056+5+1010655+12+55610\10+5+651065+5+12]\begin{bmatrix}12+5+5&-6-10-5&6+5+10\\\\-10-6-5&5+12+5&-5-6-10\\\10+5+6&-5-10-6&5+5+12\end{bmatrix}

=[222121212221\212122]\begin{bmatrix}22&-21&21\\\\-21&22&-21\\\21&-21&22\end{bmatrix}

Now A3-6A2+9A-4 II
[222121212221\212122]\begin{bmatrix}22&-21&21\\\\-21&22&-21\\\21&-21&22\end{bmatrix}-6[655565\556]\begin{bmatrix}6&-5&5\\\\-5&6&-5\\\5&-5&6\end{bmatrix}+9[211121\112]\begin{bmatrix}2&-1&1\\\\-1&2&-1\\\1&-1&2\end{bmatrix}-4[100\010\001]\begin{bmatrix}1&0&0\\\0&1&0\\\0&0&1\end{bmatrix}

=[222121212221\212122]\begin{bmatrix}22&-21&21\\\\-21&22&-21\\\21&-21&22\end{bmatrix}-[363030303630\303036]\begin{bmatrix}36&-30&30\\\\-30&36&-30\\\30&-30&36\end{bmatrix}+[18999189\9918]\begin{bmatrix}18&-9&9\\\\-9&18&-9\\\9&-9&18\end{bmatrix}-[400\040\004]\begin{bmatrix}4&0&0\\\0&4&0\\\0&0&4\end{bmatrix}

=[40 -30 30 -30 40 -30 30 -30 40]-[40 -30 30 -30 40 -30 30 -30 40]=[000\000\000]\begin{bmatrix}0&0&0\\\0&0&0\\\0&0&0\end{bmatrix}
so A3-6A2+9A-4I=0
(AAA)A-1-6(AA)A-1+9AA-1-4IA-1=0 [post multiplying by A-1 as IAI≠0]
\Rightarrow AA(AA-1)-6A(AA-1)+9(AA-1)=4(IA-1)
\Rightarrow AAi-6AI+9I=4A-1
\Rightarrow A2-6A+9I=4A-1
\Rightarrow A-1=14\frac{1}{4}(A2-6A+9I) ..(1)
A2-6A+9I

=[655565\556]\begin{bmatrix}6&-5&5\\\\-5&6&-5\\\5&-5&6\end{bmatrix}-6[211121\112]\begin{bmatrix}2&-1&1\\\\-1&2&-1\\\1&-1&2\end{bmatrix}+9[100\010\001]\begin{bmatrix}1&0&0\\\0&1&0\\\0&0&1\end{bmatrix}

=[655565\556]\begin{bmatrix}6&-5&5\\\\-5&6&-5\\\5&-5&6\end{bmatrix}-[12666126\6612]\begin{bmatrix}12&-6&6\\\\-6&12&-6\\\6&-6&12\end{bmatrix}+[900\090\009]\begin{bmatrix}9&0&0\\\0&9&0\\\0&0&9\end{bmatrix}

=[311\131113]\begin{bmatrix}3&1&-1\\\1&3&1\\\\-1&1&3\end{bmatrix}

From equation (1), we have:

A-1=\frac{1}{4}$$\begin{bmatrix}3&1&-1\\\1&3&1\\\\-1&1&3\end{bmatrix}