Question
Mathematics Question on Determinants
If A=2−1\1−12−11−12verify that A3-6A2+9A-4 I=0 and hence find A-1
A=2−1\1−12−11−12
A2=\begin{bmatrix}2&-1&1\\\\-1&2&-1\\\1&-1&2\end{bmatrix}$$\begin{bmatrix}2&-1&1\\\\-1&2&-1\\\1&-1&2\end{bmatrix}
=4+1+1−2−2−1\2+1+2−2−2−11+4+1−1−2−22+1+2−1−2−21+1+4
=6−5\5−56−55−56
A3=A2. A
=\begin{bmatrix}6&-5&5\\\\-5&6&-5\\\5&-5&6\end{bmatrix}$$\begin{bmatrix}2&-1&1\\\\-1&2&-1\\\1&-1&2\end{bmatrix}
=12+5+5−10−6−5\10+5+6−6−10−55+12+5−5−10−66+5+10−5−6−105+5+12
=22−21\21−2122−2121−2122
Now A3-6A2+9A-4 I
22−21\21−2122−2121−2122-66−5\5−56−55−56+92−1\1−12−11−12-41\0\0010001
=22−21\21−2122−2121−2122-36−30\30−3036−3030−3036+18−9\9−918−99−918-4\0\0040004
=[40 -30 30 -30 40 -30 30 -30 40]-[40 -30 30 -30 40 -30 30 -30 40]=0\0\0000000
so A3-6A2+9A-4I=0
(AAA)A-1-6(AA)A-1+9AA-1-4IA-1=0 [post multiplying by A-1 as IAI≠0]
⇒ AA(AA-1)-6A(AA-1)+9(AA-1)=4(IA-1)
⇒ AAi-6AI+9I=4A-1
⇒ A2-6A+9I=4A-1
⇒ A-1=41(A2-6A+9I) ..(1)
A2-6A+9I
=6−5\5−56−55−56-62−1\1−12−11−12+91\0\0010001
=6−5\5−56−55−56-12−6\6−612−66−612+9\0\0090009
=3\1−1131−113
From equation (1), we have:
A-1=\frac{1}{4}$$\begin{bmatrix}3&1&-1\\\1&3&1\\\\-1&1&3\end{bmatrix}