Solveeit Logo

Question

Mathematics Question on Determinants

If A=[210 021 102 ]A=\begin{bmatrix} {2}&{1} &{0}\\\ {0}&{2}& {1} \\\ {1}&{0}&{2}\\\ \end{bmatrix} then adjA| adj A| =

A

81

B

0

C

9

D

44570

Answer

81

Explanation

Solution

Given, A=[210 021 102]A=\begin{bmatrix} 2 & 1 & 0 \\\ 0 & 2 & 1 \\\ 1 & 0 & 2\end{bmatrix}
C11=4,C12=1,C13=2C_{11}=4, C_{12}=1, C_{13}=-2
C21=2,C22=4,C23=1C_{21}=-2, C_{22}=4, C_{23}=1
C31=1,C32=2,C33=4C_{31}=1, C_{32}=-2, C_{33}=4
\therefore\,\,\,\adj (A)=[412 241 124]T(A)=\begin{bmatrix} 4 & 1 & -2 \\\ -2 & 4 & 1 \\\ 1 & -2 & 4\end{bmatrix}^{T}
=[421 142 214]=\begin{bmatrix}4 & -2 & 1 \\\ 1 & 4 & -2 \\\ -2 & 1 & 4\end{bmatrix}
\therefore | adj A=4(16+2)+2(44)+(1+8) A|=4(16+2)+2(4-4)+(1+8)
=72+0+9=81=72+0+9=81