Solveeit Logo

Question

Mathematics Question on Matrices

If A=[123\579211]\begin{bmatrix}-1&2&3\\\5&7&9\\\\-2&1&1\end{bmatrix}and B=[415\120\131]\begin{bmatrix}-4&1&-5\\\1&2&0\\\1&3&1\end{bmatrix},then verify that
(i)(A+B)'=A'+B'
(ii)(A-B)'=A'-B'

Answer

We have: A'=[152\271\391]\begin{bmatrix}-1&5&-2\\\2&7&1\\\3&9&1\end{bmatrix},B'=[411\123501]\begin{bmatrix}-4&1&1\\\1&2&3\\\\-5&0&1\end{bmatrix}

(i)A+B= [123\579211]\begin{bmatrix}-1&2&3\\\5&7&9\\\\-2&1&1\end{bmatrix}+[415\120\131]\begin{bmatrix}-4&1&-5\\\1&2&0\\\1&3&1\end{bmatrix}

=[532\699\142]\begin{bmatrix}-5&3&-2\\\6&9&9\\\1&4&2\end{bmatrix}

therefore (A+B)'=[561\394292]\begin{bmatrix}-5&6&-1\\\3&9&4\\\\-2&9&2\end{bmatrix}

A'+B'=[152\271\391]\begin{bmatrix}-1&5&-2\\\2&7&1\\\3&9&1\end{bmatrix}+[411\123501]\begin{bmatrix}-4&1&1\\\1&2&3\\\\-5&0&1\end{bmatrix}
Hence we verified that (A+B)'=A'+B'
(ii)A-B=[123\579211]\begin{bmatrix}-1&2&3\\\5&7&9\\\\-2&1&1\end{bmatrix}-[415\120\131]\begin{bmatrix}-4&1&-5\\\1&2&0\\\1&3&1\end{bmatrix}

=[318\459320]\begin{bmatrix}3&1&8\\\4&5&9\\\\-3&-2&0\end{bmatrix}

therefore (A-B)'=[343\152\890]\begin{bmatrix}-3&4&-3\\\1&5&-2\\\8&9&0\end{bmatrix}

A'-B'=[152\271\391]\begin{bmatrix}-1&5&-2\\\2&7&1\\\3&9&1\end{bmatrix}-[411\123501]\begin{bmatrix}-4&1&1\\\1&2&3\\\\-5&0&1\end{bmatrix}

=[343\152\890]\begin{bmatrix}-3&4&-3\\\1&5&-2\\\8&9&0\end{bmatrix}

Hence we verified that (A-B)'=A'-B'