Solveeit Logo

Question

Mathematics Question on Matrices

if A=[11 21],B=[x1 y1]A = \begin{bmatrix}1&-1\\\ 2&-1\end{bmatrix} , B =\begin{bmatrix}x&1\\\ y&-1\end{bmatrix} and (A+B)2=A2+B2,\left(A + B\right)^{2} =A^{2} + B^{2}, then x+yx + y =

A

22

B

33

C

44

D

55

Answer

55

Explanation

Solution

(A+B)2=A2+B2AB+BA=0 \left(A + B\right)^{2 }= A^{2 }+ B^{2} \Rightarrow AB+ BA= 0 [11 21][x1 y1]+[x1 y1][11 21]=0\Rightarrow\begin{bmatrix}1&-1\\\ 2&-1\end{bmatrix}\begin{bmatrix}x&1\\\ y&-1\end{bmatrix}+\begin{bmatrix}x&1\\\ y&-1\end{bmatrix}\begin{bmatrix}1&-1\\\ 2&-1\end{bmatrix}=0 [xy2 2xy3]+[x+2x1 y2y+1]=[00 00]\Rightarrow\begin{bmatrix}x-y&2\\\ 2x-y&3\end{bmatrix}+\begin{bmatrix}x+2&-x-1\\\ y-2&-y+1\end{bmatrix}=\begin{bmatrix}0&0\\\ 0&0\end{bmatrix} 2xy+2=0....(i),x+1=0....(ii)\Rightarrow2x-y+2=0....\left(i\right), -x+1=0....\left(ii\right) 2x2=0....(iii)andy+4=0\,\,....(iv)2x-2=0....\left(iii\right) and-y+4 =0\backslash,\backslash,....\left(iv\right) From (ii),x=1\left(ii\right), x = 1 and from (iv),y=4\left(iv\right), y = 4 Now, x+y=1+4=5x + y = 1 + 4 = 5