Solveeit Logo

Question

Mathematics Question on Determinants

If A=[111 213 111 ],10B[422 50α 123 ]A =\begin{bmatrix} {1}&{-1} &{1}\\\ {2}&{1}& {-3} \\\ {1}&{1}&{1}\\\ \end{bmatrix} ,10B \begin{bmatrix} {4}&{2} &{2}\\\ {-5}&{0}& {\alpha} \\\ {1}&{-2}&{3}\\\ \end{bmatrix} and BB is the inverse of AA, then the value of α\alpha is

A

0

B

2

C

4

D

5

Answer

5

Explanation

Solution

Given, A=111 213 111A = \begin{vmatrix}1&-1&1\\\ 2&1&-3\\\ 1&1&1\end{vmatrix} and
10B=422 50α 12310 B = \begin{vmatrix}4&2&2\\\ -5&0&\alpha\\\ 1&-2&3\end{vmatrix}
Since, B is the inverse of A
ie, B=A1 B = A^{-1}
So, 10A1=422 50α 12310 A^{-1}= \begin{vmatrix}4&2&2\\\ -5&0&\alpha\\\ 1&-2&3\end{vmatrix}
10A1A=422 50α 123A\Rightarrow 10 A^{-1} A = \begin{vmatrix}4&2&2\\\ -5&0&\alpha\\\ 1&-2&3\end{vmatrix} A
10I=422 50α 123111 213 111\Rightarrow 10I = \begin{vmatrix}4&2&2\\\ -5&0&\alpha\\\ 1&-2&3\end{vmatrix} \begin{vmatrix}1&-1&1\\\ 2&1&-3\\\ 1&1&1\end{vmatrix}
1000 0100 0010=1000 5+α5+α5+α 0010\Rightarrow \begin{vmatrix}10&0&0\\\ 0&10&0\\\ 0&0&10\end{vmatrix} = \begin{vmatrix}10&0&0\\\ -5+\alpha& 5+\alpha &-5 +\alpha\\\ 0&0&10\end{vmatrix}
5+α=0\Rightarrow -5 +\alpha = 0
α=5\Rightarrow \alpha = 5
Alternative : A1=1Aadj(A)A^{-1} = \frac{1}{\left|A\right|} \text{adj} \left(A\right)
adj(A)=422 505 123\text{adj}\left(A\right) = \begin{vmatrix}4&2&2\\\ -5&0&5\\\ 1&-2&3\end{vmatrix}
A=1[1+3]+1[2+3]+1[21]=10\left|A\right| = 1\left[1+3\right] + 1 \left[2+3 \right]+1 \left[2-1\right] =10
A1=110422 505 123\therefore A^{-1} = \frac{1}{10} \begin{vmatrix}4&2&2\\\ -5&0&5\\\ 1&-2&3\end{vmatrix}
10B=422 50α 12310B = \begin{vmatrix}4&2&2\\\ -5&0 &\alpha\\\ 1&-2&3\end{vmatrix}
=422 505 123= \begin{vmatrix}4&2&2\\\ -5&0&5\\\ 1&-2&3\end{vmatrix}
α=5\Rightarrow \alpha = 5