Question
Mathematics Question on Determinants
If A=1 2 1 −1111−31,10B4 −5 1 20−22α3 and B is the inverse of A, then the value of α is
A
0
B
2
C
4
D
5
Answer
5
Explanation
Solution
Given, A=1 2 1−1111−31 and
10B=4 −5 120−22α3
Since, B is the inverse of A
ie, B=A−1
So, 10A−1=4 −5 120−22α3
⇒10A−1A=4 −5 120−22α3A
⇒10I=4 −5 120−22α31 2 1−1111−31
⇒10 0 001000010=10 −5+α 005+α00−5+α10
⇒−5+α=0
⇒α=5
Alternative : A−1=∣A∣1adj(A)
adj(A)=4 −5 120−2253
∣A∣=1[1+3]+1[2+3]+1[2−1]=10
∴A−1=1014 −5 120−2253
10B=4 −5 120−22α3
=4 −5 120−2253
⇒α=5