Solveeit Logo

Question

Mathematics Question on Invertible Matrices

If A=[11 11]A = \begin{bmatrix}1&1\\\ 1&1\end{bmatrix} then A100A^{100} :

A

2100A2^{100}A

B

299A2^{99}A

C

2101A2^{101}A

D

None of the above

Answer

299A2^{99}A

Explanation

Solution

Let A=[11 11] A = \begin{bmatrix}1&1\\\ 1&1\end{bmatrix}
A2=[11 11][11 11]A^2 = \begin{bmatrix}1&1\\\ 1&1\end{bmatrix} \begin{bmatrix}1&1\\\ 1&1\end{bmatrix}
=2[11 11]=2A= 2 \begin{bmatrix}1&1\\\ 1&1\end{bmatrix} = 2A
A3=22[11 11]A^3 = 2^2 \begin{bmatrix}1&1\\\ 1&1\end{bmatrix},
A4=23[11 11]A^4 = 2^3 \begin{bmatrix}1&1\\\ 1&1\end{bmatrix}
A3=22A,A4=23AA^3 = 2^2 A, \, \, \, A^4 = 2^3 A
An=2n1[11 11]\therefore \, A^n = 2^{n - 1} \begin{bmatrix}1&1\\\ 1&1\end{bmatrix}
A100=21001A\Rightarrow \, A^{100} = 2^{100 - 1} A
A100=299A\therefore \, A^{100} = 2^{99} A