Question
Mathematics Question on Matrices
If A=1 1 1111111,Prove that An=3n−1 3n−1 3n−13n−13n−13n−13n−13n−13n−1,n∈N
It is given that A=1 1 1111111
To show P(n):An=3n−1 3n−1 3n−13n−13n−13n−13n−13n−13n−1
We shall prove the result by using the principle of mathematical induction.
For n = 1, we have:
P(1)=31−1 31−1 31−131−131−131−131−131−131−1
An=30 30 30303030303030
A=1 1 1111111
Therefore, the result is true for n = 1.
Let the result be true for n = k.
That is P(k)=Ak=3k−1 3k−1 3k−13k−13k−13k−13k−13k−13k−1
Now, we prove that the result is true for n = k + 1.
Ak+1=A.Ak
=1 1 11111113k−1 3k−1 3k−13k−13k−13k−13k−13k−13k−1
3.3k−1 3.3k−1 3.3k−13.3k−13.3k−13.3k−13.3k−13.3k−13.3k−1
3k+1−1 3k+1−1 3k+1−13k+1−13k+1−13k+1−13k+1−13k+1−13k+1−1
Therefore, the result is true for n=k+1.
Thus by the principle of mathematical induction, we have:
An=3n−1 3n−1 3n−13n−13n−13n−13n−13n−13n−1,n∈N