Solveeit Logo

Question

Mathematics Question on Matrices

If A=[111 111 111]A=\begin{bmatrix}1&1&1\\\ 1&1&1\\\ 1&1&1\end{bmatrix},Prove that An=[3n13n13n1 3n13n13n1 3n13n13n1],nNA^n=\begin{bmatrix}3^{n-1}& 3^{n-1}& 3^{n-1}\\\ 3^{n-1}& 3^{n-1}& 3^{n-1}\\\ 3^{n-1}& 3^{n-1}& 3^{n-1}\end{bmatrix},n∈N

Answer

It is given that A=[111 111 111]A=\begin{bmatrix}1&1&1\\\ 1&1&1\\\ 1&1&1\end{bmatrix}
To show P(n):An=[3n13n13n1 3n13n13n1 3n13n13n1]P(n):A^n=\begin{bmatrix}3^{n-1}& 3^{n-1}& 3^{n-1}\\\ 3^{n-1}& 3^{n-1}& 3^{n-1}\\\ 3^{n-1}& 3^{n-1}& 3^{n-1}\end{bmatrix}
We shall prove the result by using the principle of mathematical induction.
For n = 1, we have:
P(1)=[311311311 311311311 311311311]P(1)=\begin{bmatrix}3^{1-1}& 3^{1-1}& 3^{1-1}\\\ 3^{1-1}& 3^{1-1}& 3^{1-1}\\\ 3^{1-1}& 3^{1-1}& 3^{1-1}\end{bmatrix}
An=[303030 303030 303030]A^n=\begin{bmatrix}3^0& 3^0& 3^0\\\ 3^0& 3^0& 3^0\\\ 3^0& 3^0& 3^0\end{bmatrix}
A=[111 111 111]A=\begin{bmatrix}1&1&1\\\ 1&1&1\\\ 1&1&1\end{bmatrix}
Therefore, the result is true for n = 1.
Let the result be true for n = k.
That is P(k)=Ak=[3k13k13k1 3k13k13k1 3k13k13k1]P(k)=A^k=\begin{bmatrix}3^{k-1}& 3^{k-1}& 3^{k-1}\\\ 3^{k-1}& 3^{k-1}& 3^{k-1}\\\ 3^{k-1}& 3^{k-1}& 3^{k-1}\end{bmatrix}
Now, we prove that the result is true for n = k + 1.
Ak+1=A.AkA^{k+1}=A.A^k
=[111 111 111][3k13k13k1 3k13k13k1 3k13k13k1]=\begin{bmatrix}1&1&1\\\ 1&1&1\\\ 1&1&1\end{bmatrix}\begin{bmatrix}3^{k-1}& 3^{k-1}& 3^{k-1}\\\ 3^{k-1}& 3^{k-1}& 3^{k-1}\\\ 3^{k-1}& 3^{k-1}& 3^{k-1}\end{bmatrix}
[3.3k13.3k13.3k1 3.3k13.3k13.3k1 3.3k13.3k13.3k1]\begin{bmatrix}3.3^{k-1}& 3.3^{k-1}& 3.3^{k-1}\\\ 3.3^{k-1}& 3.3^{k-1}& 3.3^{k-1}\\\ 3.3^{k-1}& 3.3^{k-1}& 3.3^{k-1}\end{bmatrix}
[3k+113k+113k+11 3k+113k+113k+11 3k+113k+113k+11]\begin{bmatrix}3^{k+1}-1& 3^{k+1}-1& 3^{k+1}-1\\\ 3^{k+1}-1& 3^{k+1}-1& 3^{k+1}-1\\\ 3^{k+1}-1& 3^{k+1}-1& 3^{k+1}-1\end{bmatrix}
Therefore, the result is true for n=k+1.n = k + 1.
Thus by the principle of mathematical induction, we have:
An=[3n13n13n1 3n13n13n1 3n13n13n1],nNA^n=\begin{bmatrix}3^{n-1}& 3^{n-1}& 3^{n-1}\\\ 3^{n-1}& 3^{n-1}& 3^{n-1}\\\ 3^{n-1}& 3^{n-1}& 3^{n-1}\end{bmatrix},n∈N