Question
Mathematics Question on Matrices
If A=1 0 2020213, prove that A3−6A2+7A+2I=0
Answer
A2=AA=1 0 20202131 0 2020213
=\begin{bmatrix}1+0+4& 0+0+0& 2+0+6\\\ 0+0+2& 0+4+0& 0+2+3\\\ 2+0+6& 0+0+0& 4+0+9\end{bmatrix}$$=\begin{bmatrix}5&0&8\\\ 2&4&5\\\ 8&0&13\end{bmatrix}
Now A3=A2.A=5 2 804085131 0 2020213
=5+0+16 2+0+10 8+0+260+0+00+8+00+0+010+0+244+4+1516+0+39
=21 12 34080342355
∴A3−6A2+7A+2I
=21 12 34080342355−65 2 80408513+71 0 2020213+21 0 0010001
=21 12 34080342355−30 12 480240483078+7 0 14014014721+2 0 0020002
=30 12 480240483078−30 12 480240483078
=0 0 0000000=0
∴A3−6A2+7A+2I=0