Solveeit Logo

Question

Mathematics Question on Matrices

If A=[100 x10 xx1 ]A= \begin{bmatrix} 1 & 0 & 0 \\\ x & 1 & 0 \\\ x & x & 1 \\\ \end{bmatrix} and I=[100 010 001 ],I= \begin{bmatrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{bmatrix} , then A34A2+3A+I{{A}^{3}}-4{{A}^{2}}+3A+I is equal to

A

3I3I

B

II

C

I-I

D

2I-2I

Answer

II

Explanation

Solution

Given, A=100 x10 xx1 A=1A=\left| \begin{matrix} 1 & 0 & 0 \\\ x & 1 & 0 \\\ x & x & 1 \\\ \end{matrix} \right|\Rightarrow A=1
\therefore A34A2+3A+I=(1)34(1)3+3(1)+I{{A}^{3}}-4{{A}^{2}}+3A+I={{(1)}^{3}}-4{{(1)}^{3}}+3(1)+I
=I=I