Question
Mathematics Question on Matrices
If A=1 x x 01x001 and I=1 0 0 010001, then A3−4A2+3A+I is equal to
A
3I
B
I
C
−I
D
−2I
Answer
I
Explanation
Solution
Given, A=1 x x 01x001⇒A=1
∴ A3−4A2+3A+I=(1)3−4(1)3+3(1)+I
=I
If A=1 x x 01x001 and I=1 0 0 010001, then A3−4A2+3A+I is equal to
3I
I
−I
−2I
I
Given, A=1 x x 01x001⇒A=1
∴ A3−4A2+3A+I=(1)3−4(1)3+3(1)+I
=I