Question
Mathematics Question on Matrices
If A=[0 tanα/2−tanα/20] and I is the identity matrix of order 2,show that I+A=(I−A)[cosα sinα−sinαcosα]
On the LHS
I+A=[1\001][0 2tanα2−tanα0]
=[1 2tanα2−tanα1]......(1)
On the RHS
(I−A)[cosα sinα−sinαcosα]
=[[1\001]−[0 2tanα2−tanα0][cosα sinα−sinαcosα]]
=[1 2−tanα2tanα1][cosα sinα−sinαcosα]
=\begin{bmatrix}cosα+sinα\frac{tanα}{2}& -sinα+cosα\frac{tanα}{2}\\\ -cosα\frac{tanα}{2}+sinα& sinα\frac{tanα}{2}+cosα\end{bmatrix}....(2)$$=\begin{bmatrix}1-\frac{2sin^2α}{2}+\frac{2sinα}{2}\frac{cosα}{2}\frac{tanα}{2}& \frac{-2sinα}{2}\frac{cosα}{2}+(2cos^2α-1)\frac{tanα}{2}\\\ -(\frac{2cos^2α}{2}-1)\frac{tanα}{2}+\frac{2sinα}{2}\frac{cosα}{2}& \frac{2sinα}{2}\frac{cosα}{2}\frac{tanα}{2}+1-\frac{2sin^2α}{2}\end{bmatrix}
=[1−22sin2α+22sin2α 2−2sinα2cosα+2tanα+22sinα2cosα2−2sinα2cosα+22sinα2cosα−2tanα22sin2α+1−22sin2α]
=[1 2tanα2−tanα1]
Thus,from(1) and (2),we get LHS=RHS.