Solveeit Logo

Question

Mathematics Question on Matrices

If A=[0tanα/2 tanα/20]A=\begin{bmatrix}0& -tanα/2\\\ tanα/2& 0\end{bmatrix} and I is the identity matrix of order 2,show that I+A=(IA)[cosαsinα sinαcosα]I+A=(I-A)\begin{bmatrix}cosα& -sinα\\\ sinα& cosα\end{bmatrix}

Answer

On the LHS
I+A=[10\01][0tanα2 tanα20]I+A=\begin{bmatrix}1&0\\\0&1\end{bmatrix}\begin{bmatrix}0& \frac{-tanα}{2}\\\ \frac{tanα}{2}& 0\end{bmatrix}
=[1tanα2 tanα21]......(1)=\begin{bmatrix}1& \frac{-tanα}{2}\\\ \frac{tanα}{2}& 1\end{bmatrix}......(1)
On the RHS
(IA)[cosαsinα sinαcosα](I-A)\begin{bmatrix}cosα& -sinα\\\ sinα& cosα\end{bmatrix}
=[[10\01][0tanα2 tanα20][cosαsinα sinαcosα]]=\bigg[\begin{bmatrix}1&0\\\0&1\end{bmatrix}-\begin{bmatrix}0& \frac{-tanα}{2}\\\ \frac{tanα}{2}& 0\end{bmatrix}\begin{bmatrix}cosα& -sinα\\\ sinα& cosα\end{bmatrix}\bigg]
=[1tanα2 tanα21][cosαsinα sinαcosα]=\begin{bmatrix}1& \frac{tanα}{2}\\\ \frac{-tanα}{2}& 1\end{bmatrix}\begin{bmatrix}cosα& -sinα\\\ sinα& cosα\end{bmatrix}
=\begin{bmatrix}cosα+sinα\frac{tanα}{2}& -sinα+cosα\frac{tanα}{2}\\\ -cosα\frac{tanα}{2}+sinα& sinα\frac{tanα}{2}+cosα\end{bmatrix}....(2)$$=\begin{bmatrix}1-\frac{2sin^2α}{2}+\frac{2sinα}{2}\frac{cosα}{2}\frac{tanα}{2}& \frac{-2sinα}{2}\frac{cosα}{2}+(2cos^2α-1)\frac{tanα}{2}\\\ -(\frac{2cos^2α}{2}-1)\frac{tanα}{2}+\frac{2sinα}{2}\frac{cosα}{2}& \frac{2sinα}{2}\frac{cosα}{2}\frac{tanα}{2}+1-\frac{2sin^2α}{2}\end{bmatrix}
=[12sin2α2+2sin2α22sinα2cosα2+2sinα2cosα2tanα2 2sinα2cosα2+tanα2+2sinα2cosα22sin2α2+12sin2α2]=\begin{bmatrix}1-\frac{2sin^2α}{2}+\frac{2sin^2α}{2}& \frac{-2sinα}{2}\frac{cosα}{2}+\frac{2sinα}{2}\frac{cosα}{2}-\frac{tanα}{2}\\\ \frac{-2sinα}{2}\frac{cosα}{2}+\frac{tanα}{2}+\frac{2sinα}{2}\frac{cosα}{2}& \frac{2sin^2α}{2}+1-2\frac{sin^2α}{2}\end{bmatrix}
=[1tanα2 tanα21]=\begin{bmatrix}1& \frac{-tanα}{2}\\\ \frac{tanα}{2}& 1\end{bmatrix}
Thus,from(1) and (2),we get LHS=RHS.