Solveeit Logo

Question

Mathematics Question on Matrices

If A=[01 10]A = \begin{bmatrix}0&-1\\\ 1&0\end{bmatrix} then A16A^{16} is equal to :

A

[01 10]\begin{bmatrix}0&-1\\\ 1&0\end{bmatrix}

B

[01 10]\begin{bmatrix}0& 1\\\ 1&0\end{bmatrix}

C

[10 01]\begin{bmatrix} - 1 &0 \\\ 0 & 1 \end{bmatrix}

D

[10 01]\begin{bmatrix} 1 & 0 \\\ 0 & 1 \end{bmatrix}

Answer

[10 01]\begin{bmatrix} 1 & 0 \\\ 0 & 1 \end{bmatrix}

Explanation

Solution

We have A=[01 10]A = \begin{bmatrix}0&-1\\\ 1&0\end{bmatrix} Now, A2=A.A=(01 10)(01 10)A^{2} = A.A = \begin{pmatrix}0&-1\\\ 1&0\end{pmatrix}\begin{pmatrix}0&-1\\\ 1&0\end{pmatrix} =(10 01)=I= \begin{pmatrix}-1&0\\\ 0&-1\end{pmatrix} = - I where I=(10 01)I = \begin{pmatrix}1&0\\\ 0&1\end{pmatrix} is identity matrix (A2)8=(I)8=I \left(A^{2}\right)^{8} = \left(-I\right)^{8} = I Hence, A16=IA^{16} = I