Solveeit Logo

Question

Mathematics Question on Matrices

If A=[01 00] A=\begin{bmatrix}0&1\\\ 0&0\end{bmatrix}, I is the unit matrix of order 2 and a, b are arbitrary constants, then (aI+bA)2(aI + bA)^2 is equal to

A

a2I+abAa^2I + abA

B

a2I+2abAa^2I + 2abA

C

a2I+b2Aa^2I + b^2A

D

None of these

Answer

a2I+2abAa^2I + 2abA

Explanation

Solution

(aI+bA)2=a2I2+b2A2+2abAI\left(aI+bA\right)^{2}=a^{2}I^{2}+b^{2}A^{2}+2ab\,AI =a2I2+b2A2+2abA=a^{2}I^{2}+b^{2}\,A^{2}+2abA But A2=[00 00](aI+bA)2=a2I+2abA.A^{2}=\begin{bmatrix}0&0\\\ 0&0\end{bmatrix} \therefore \left(aI+bA\right)^{2}=a^{2}I+2abA.