Solveeit Logo

Question

Mathematics Question on Matrices

If A = [01 00 ]\begin{bmatrix} 0 & 1 \\\ 0 & 0 \\\ \end{bmatrix} then (aI+bA)n(aI + bA)^n is (where I is the identity matrix of order 2)

A

a2I+an1bAa^2I + a^{n-1}b \cdot A

B

anI+nanbAa^n I + na^n b \cdot A

C

anI+nan1bAa^nI + n \cdot a^{n-1} b \cdot A

D

anI+bnAa^nI + b^nA

Answer

anI+nan1bAa^nI + n \cdot a^{n-1} b \cdot A

Explanation

Solution

The correct answer is (C) : anI + n.an-1 b.A.