Solveeit Logo

Question

Question: If a be a repeated roots of the quadratic equation f(x) = 0 and A(x), B(x), C(x) are polynomials of ...

If a be a repeated roots of the quadratic equation f(x) = 0 and A(x), B(x), C(x) are polynomials of degree 3, 4, 5

respectively then determinant A(x)B(x)C(x)A(α)B(α)C(α)A(α)B(α)C(α)\left| \begin{matrix} A(x) & B(x) & C(x) \\ A(\alpha) & B(\alpha) & C(\alpha) \\ A'(\alpha) & B'(\alpha) & C'(\alpha) \end{matrix} \right|is

divisible by (where A¢(a) =(dAdx)x=α\left( \frac{dA}{dx} \right)_{x = \alpha}, etc) –

A

f(x) (x – a)3

B

(f(x))2

C

f(x)

D

None of these

Answer

f(x)

Explanation

Solution

We know that a is a root of f(x) = 0. This means (x – a) is a factor of f(x). If a is a repeated root of f(x) = 0 then f(x) has a repeated factor (x – a), i.e., (x – a)2 is a factor of f(x). But here f(x) is quadratic

\ f(x) = l(x – a)2 …(1)

Where l is a constant.

Let D(x) = A(x)B(x)C(x)A(α)B(α)C(α)A(α)B(α)C(α)\left| \begin{matrix} A(x) & B(x) & C(x) \\ A(\alpha) & B(\alpha) & C(\alpha) \\ A'(\alpha) & B'(\alpha) & C'(\alpha) \end{matrix} \right|

Which is of the degree 5 at most and 3 at least.

Clearly, D(a) = 0 …(2)

Differentiating D(x) w.r.t. x,

D¢(x)= A(x)B(x)C(x)A(α)B(α)C(α)A(α)B(α)C(α)\left| \begin{matrix} A'(x) & B'(x) & C'(x) \\ A(\alpha) & B(\alpha) & C(\alpha) \\ A'(\alpha) & B'(\alpha) & C'(\alpha) \end{matrix} \right|+A(x)B(x)C(x)000A(α)B(α)C(α)\left| \begin{matrix} A(x) & B(x) & C(x) \\ 0 & 0 & 0 \\ A'(\alpha) & B'(\alpha) & C'(\alpha) \end{matrix} \right|

+ A(x)B(x)C(x)A(α)B(α)C(α)000\left| \begin{matrix} A(x) & B(x) & C(x) \\ A(\alpha) & B(\alpha) & C(\alpha) \\ 0 & 0 & 0 \end{matrix} \right|

because derivatives of constants = 0

= A(x)B(x)C(x)A(α)B(α)C(α)A(α)B(α)C(α)\left| \begin{matrix} A'(x) & B'(x) & C'(x) \\ A(\alpha) & B(\alpha) & C(\alpha) \\ A'(\alpha) & B'(\alpha) & C'(\alpha) \end{matrix} \right|

\D¢(a) =A(α)B(α)C(α)A(α)B(α)C(α)A(α)B(α)C(α)\left| \begin{matrix} A'(\alpha) & B'(\alpha) & C'(\alpha) \\ A(\alpha) & B(\alpha) & C(\alpha) \\ A'(\alpha) & B'(\alpha) & C'(\alpha) \end{matrix} \right|= 0…(3)

because R1 ŗ R3. We know that

f(a) = 0 Ž (x – a) is a factor of f (x) and f¢(a) = 0

Ž (x – a)2 is a factor of f(x)

\ from (2) and (3), D(x) has a factor (x – a)2. \ D(x)

= (x – a)2 . F(x) = 1λ\frac{1}{\lambda}l(x – a)2 . F(x) = 1λ\frac{1}{\lambda}f(x).

F(x), using (1) \ D(x) is divisible by f(x).