Solveeit Logo

Question

Question: If $\vec{a}$ and $\vec{b}$ are unit vectors, such that $\vec{a} + 3\vec{b}$ is perpendicular to $7\v...

If a\vec{a} and b\vec{b} are unit vectors, such that a+3b\vec{a} + 3\vec{b} is perpendicular to 7a5b7\vec{a} - 5\vec{b}. The angle between a\vec{a} and b\vec{b} is

A

30 degrees

B

60 degrees

C

90 degrees

D

120 degrees

Answer

60 degrees

Explanation

Solution

Given that a\vec{a} and b\vec{b} are unit vectors, we have a=1|\vec{a}| = 1 and b=1|\vec{b}| = 1. The condition that (a+3b)(\vec{a} + 3\vec{b}) is perpendicular to (7a5b)(7\vec{a} - 5\vec{b}) means their dot product is zero: (a+3b)(7a5b)=0(\vec{a} + 3\vec{b}) \cdot (7\vec{a} - 5\vec{b}) = 0 Expanding the dot product: 7(aa)5(ab)+21(ba)15(bb)=07(\vec{a} \cdot \vec{a}) - 5(\vec{a} \cdot \vec{b}) + 21(\vec{b} \cdot \vec{a}) - 15(\vec{b} \cdot \vec{b}) = 0 Using aa=a2\vec{a} \cdot \vec{a} = |\vec{a}|^2, bb=b2\vec{b} \cdot \vec{b} = |\vec{b}|^2, and ab=ba\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}: 7a2+16(ab)15b2=07|\vec{a}|^2 + 16(\vec{a} \cdot \vec{b}) - 15|\vec{b}|^2 = 0 Substitute a=1|\vec{a}| = 1 and b=1|\vec{b}| = 1: 7(1)2+16(ab)15(1)2=07(1)^2 + 16(\vec{a} \cdot \vec{b}) - 15(1)^2 = 0 7+16(ab)15=07 + 16(\vec{a} \cdot \vec{b}) - 15 = 0 16(ab)8=016(\vec{a} \cdot \vec{b}) - 8 = 0 16(ab)=816(\vec{a} \cdot \vec{b}) = 8 ab=816=12\vec{a} \cdot \vec{b} = \frac{8}{16} = \frac{1}{2} The dot product is also defined as ab=abcosθ\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta, where θ\theta is the angle between a\vec{a} and b\vec{b}. 12=(1)(1)cosθ\frac{1}{2} = (1)(1) \cos \theta cosθ=12\cos \theta = \frac{1}{2} The angle θ\theta for which cosθ=12\cos \theta = \frac{1}{2} is 6060^\circ.