Solveeit Logo

Question

Physics Question on mechanical properties of fluid

If a ball of steel (density ρ=7.8gcm3\rho = 7.8 \,g\, cm ^{-3}) attains a terminal velocity of 10cms110\, cm \,s^{-1} when falling in a water (Coefficient of Viscosity ηwater\eta_{water} =8.5×104Pa.s= 8.5 \times 10^{-4}\, Pa.s) then its terminal velocity in glycerine (ρ=1.2gcm3,η=13.2Pa.s.\rho = 1.2 \,g \,cm^{-3}, \eta = 13.2 Pa.s.) would be, nearly :

A

6.25??104cms16.25 ??10^{-4}\, cm\, s^{-1}

B

6.45??104cms16.45 ??10^{-4}\, cm\, s^{-1}

C

1.5??105cms11.5 ??10^{-5}\, cm\, s^{-1}

D

1.6??104cms11.6 ??10^{-4}\, cm\, s^{-1}

Answer

6.25??104cms16.25 ??10^{-4}\, cm\, s^{-1}

Explanation

Solution

Vρg=6πηrv+vρgV\rho g = 6\pi\eta rv + v\rho_{\ell}g Vg(ρρ)=6πηrvVg\left(\rho - \rho_{\ell}\right) = 6\pi\eta rv Vg(ρρ)=6πηrvVg\left(\rho-\rho_{\ell}'\right) = 6\pi\eta'rv' Vη=(ρρ)(ρρ)×vηV' \eta' = \frac{\left(\rho -\rho _{\ell} '\right)}{\left(\rho -\rho_{\ell }\right)}\times v\eta V=(ρρ)(ρρ)×vηηV' = \frac{\left(\rho -\rho _{\ell} '\right)}{\left(\rho -\rho_{\ell }\right)}\times \frac{v\eta}{\eta'} =(7.81.2)(7.81)×10×8.5×10413.2= \frac{\left(7.8 -1.2\right)}{\left(7.8 - 1\right)}\times \frac{10 \times 8.5 \times10^{-4}}{13.2} v=6.25??104cm/s.v' = 6.25 ??10^{-4} \,cm/s.