Solveeit Logo

Question

Question: If \[a,b\in \\{1,2,3,4,5,6\\}\], find the number of ways a and b can be selected if \[{{\lim }_{x\to...

If a,b1,2,3,4,5,6a,b\in \\{1,2,3,4,5,6\\}, find the number of ways a and b can be selected if limx0(ax+bx2)2x=6{{\lim }_{x\to 0}}{{\left( \dfrac{{{a}^{x}}+{{b}^{x}}}{2} \right)}^{\dfrac{2}{x}}}=6

Explanation

Solution

Hint: We will first simplify the left hand side of the expression limx0(ax+bx2)2x=6{{\lim }_{x\to 0}}{{\left( \dfrac{{{a}^{x}}+{{b}^{x}}}{2} \right)}^{\dfrac{2}{x}}}=6 by using formulas of limits like limxa(1+f(x))g(x)=elimxaf(x)g(x){{\lim }_{x\to a}}{{(1+f(x))}^{g(x)}}={{e}^{{{\lim }_{x\to a}}f(x)g(x)}} and limx0ax1x=loga{{\lim }_{x\to 0}}\dfrac{{{a}^{x}}-1}{x}=\log a. Then we will find the different pairs of a, b which belongs to {1, 2, 3, 4, 5, 6} and equals 6. Hence we will get the answer.

Complete step-by-step answer:
So first we will evaluate limx0(ax+bx2)2x=6.......(1){{\lim }_{x\to 0}}{{\left( \dfrac{{{a}^{x}}+{{b}^{x}}}{2} \right)}^{\dfrac{2}{x}}}=6.......(1).
Now substituting x equal to 0 in left hand side of equation (1) we get,
(a0+b02)20=1.......(2)\Rightarrow {{\left( \dfrac{{{a}^{0}}+{{b}^{0}}}{2} \right)}^{\dfrac{2}{0}}}={{1}^{\infty }}.......(2)
So we have a general form for this type of problems limxa(1+f(x))g(x){{\lim }_{x\to a}}{{(1+f(x))}^{g(x)}} where f(x)0f(x)\to 0 and g(x)g(x)\to \infty then we can write limxa(1+f(x))g(x)=elimxaf(x)g(x)....(3){{\lim }_{x\to a}}{{(1+f(x))}^{g(x)}}={{e}^{{{\lim }_{x\to a}}f(x)g(x)}}....(3).
Now converting left hand side of equation (1) in limxa(1+f(x))g(x){{\lim }_{x\to a}}{{(1+f(x))}^{g(x)}} form we get,
limx0(1+(ax+bx21))2x.......(4)\Rightarrow {{\lim }_{x\to 0}}{{\left( 1+\left( \dfrac{{{a}^{x}}+{{b}^{x}}}{2}-1 \right) \right)}^{\dfrac{2}{x}}}.......(4)
So from equation (3) we can see that f(x)=ax+bx21f(x)=\dfrac{{{a}^{x}}+{{b}^{x}}}{2}-1 which tends to 0 and g(x)=2xg(x)=\dfrac{2}{x} which tends to infinity. So now using the formula from equation (3) in equation (4) we get,
limx0(1+(ax+bx21))2x=elimx0(ax+bx21)×2x.......(5)\Rightarrow {{\lim }_{x\to 0}}{{\left( 1+\left( \dfrac{{{a}^{x}}+{{b}^{x}}}{2}-1 \right) \right)}^{\dfrac{2}{x}}}={{e}^{{{\lim }_{x\to 0}}\left( \dfrac{{{a}^{x}}+{{b}^{x}}}{2}-1 \right)\times \dfrac{2}{x}}}.......(5)
Now solving the exponential term in right hand side of the equation (5) separately we get,
limx0(ax+bx22)2x.......(6)\Rightarrow {{\lim }_{x\to 0}}\left( \dfrac{{{a}^{x}}+{{b}^{x}}-2}{2} \right)\dfrac{2}{x}.......(6)
Now cancelling similar terms in equation (6) and rearranging we get,
limx0((ax1)+(bx1)x).......(7)\Rightarrow {{\lim }_{x\to 0}}\left( \dfrac{({{a}^{x}}-1)+({{b}^{x}}-1)}{x} \right).......(7)
Now dividing the numerators separately by x in equation (7) we get,
limx0ax1x+limxabx1x.......(8)\Rightarrow {{\lim }_{x\to 0}}\dfrac{{{a}^{x}}-1}{x}+{{\lim }_{x\to a}}\dfrac{{{b}^{x}}-1}{x}.......(8)
Now we know the formula that limx0ax1x=loga{{\lim }_{x\to 0}}\dfrac{{{a}^{x}}-1}{x}=\log a and hence applying this in equation (8) we get,
loga+logb.......(9)\Rightarrow \log a+\log b.......(9)
Now substituting from equation (9) back to the exponent in equation (5) and solving we get,

& \Rightarrow {{e}^{\log a+\log b}} \\\ & \Rightarrow {{e}^{\log ab}}=ab.......(10) \\\ \end{aligned}$$ So substituting ab from equation (10) in equation (1) we get, $$\Rightarrow ab=6.......(11)$$ So from equation (11) we can have different pairs of (a, b) such as $$1\times 6=6$$, $$2\times 3=6$$, $$3\times 2=6$$ and $$6\times 1=6$$ and in all these pairs $$a,b\in \\{1,2,3,4,5,6\\}$$. Hence we can choose a and b in 4 different ways. Note: Remembering the formula and properties of the limit is the key here. We could have applied L hospital rule in equation (6) but then it could have consumed more time and also it would have got more complex. Also we should know the basic logarithmic rules like $$\log a+\log b=\log ab$$.