Solveeit Logo

Question

Question: If a, b, h, k are constants, while U and V are \(U = \frac{X - a}{h},V = \frac{Y - b}{k},\) then...

If a, b, h, k are constants, while U and V are U=Xah,V=Ybk,U = \frac{X - a}{h},V = \frac{Y - b}{k}, then

A

Cov (X,Y)=(X,Y) = Cov (U,V)(U,V)

B

Cov (X,Y)=hk(X,Y) = hk Cov (U,V)(U,V)

C

Cov (X,Y)=ab(X,Y) = ab Cov (U,V)(U,V)

D

Cov (U,V)(U,V) = hkhk Cov (X,Y)(X,Y)

Answer

Cov (X,Y)=hk(X,Y) = hk Cov (U,V)(U,V)

Explanation

Solution

Given that U=Xah,V=YbkU = \frac{X - a}{h},V = \frac{Y - b}{k}

X=hU+a,Y=kV+bX = hU + a,Y = kV + b

Cov(X,Y)=hkCov(U,V)\therefore Co ⥂ v(X,Y) = hkCo ⥂ v(U,V),

[Cov(AX+B,CY+D)=ACCov(x,y)].\lbrack\because Co ⥂ v(AX + B,CY + D) = ACCo ⥂ v(x,y)\rbrack.