Solveeit Logo

Question

Question: If a, b, g, d are four complex numbers such that g/d is real and ad – bg¹ 0, then z = \(\frac{\alpha...

If a, b, g, d are four complex numbers such that g/d is real and ad – bg¹ 0, then z = α+βtγ+δt\frac{\alpha + \beta t}{\gamma + \delta t}, t Ī R represents –

A

Circle

B

Parabola

C

Straight line

D

None of these

Answer

Straight line

Explanation

Solution

Sol. z = α+βtγ+δt\frac{\alpha + \beta t}{\gamma + \delta t}Ž (g + dt) z = a + bt Ž (dz – b)t = a – gz

Ž t = αγzδzβ\frac{\alpha - \gamma z}{\delta z - \beta} [Q ad – bg ¹ 0]

As t is real, αγzδzβ\frac{\alpha - \gamma z}{\delta z - \beta} = αˉγˉzˉδˉzˉβˉ\frac{\bar{\alpha} - \bar{\gamma}\bar{z}}{\bar{\delta}\bar{z}–\bar{\beta}}

Ž (a – gz) (δˉzˉβˉ)(\bar{\delta}\bar{z}–\bar{\beta}) = (αˉγˉzˉ)(\bar{\alpha}–\bar{\gamma}\bar{z}) (dz – b)

Ž (γˉδγδˉ)(\bar{\gamma}\delta - \gamma\bar{\delta}) zzˉ\bar{z} + (γβˉαˉδ)(\gamma\bar{\beta} - \bar{\alpha}\delta) z + (αδˉβγˉ\alpha\bar{\delta}–\beta\bar{\gamma})zˉ\bar{z}

= aβˉ\bar{\beta}αˉ\bar{\alpha}b … (1)

Since γδ\frac{\gamma}{\delta} is real, γδ\frac{\gamma}{\delta}= γˉδˉ\frac{\bar{\gamma}}{\bar{\delta}}or gδˉ\bar{\delta}γˉ\bar{\gamma}d = 0.

Therefore (1) can be written as

aˉz+azˉ=c\bar{a}z + a\bar{z} = c … (2)

Where a = –I (αδˉβγˉ\alpha\bar{\delta} - \beta\bar{\gamma}) and c = i (αˉβαβˉ\bar{\alpha}\beta - \alpha\bar{\beta})

Note that a ¹ 0 for if a = 0 then αδˉβγˉ\alpha\bar{\delta} - \beta\bar{\gamma} = 0

Ž αβ=γˉδˉ=γδ\frac{\alpha}{\beta} = \frac{\bar{\gamma}}{\bar{\delta}} = \frac{\gamma}{\delta} (Q γδ\frac{\gamma}{\delta} is real)

Ž ad – bg = 0.

Which is against the hypothesis. Also not that (z) is a straight line not a circle.