Solveeit Logo

Question

Question: If a, b, g, d are four complex numbers such that \(\frac{\gamma}{\delta}\)is real and ad – bg ¹ 0, t...

If a, b, g, d are four complex numbers such that γδ\frac{\gamma}{\delta}is real and ad – bg ¹ 0, then z = α+βtγ+δt\frac{\alpha + \beta t}{\gamma + \delta t}, tĪ R represents a

A

Circle

B

Parabola

C

Ellipse

D

Straight line

Answer

Straight line

Explanation

Solution

Sol. z = α+βtγ+δt\frac{\alpha + \beta t}{\gamma + \delta t} Ž ( g + dt) z = a + bt

Ž (dz – b)t = a – gz

Ž t = αγzδzβ\frac{\alpha - \gamma z}{\delta z - \beta} [Q ad – bg ¹ 0 ]

As t is real, αγzδzβ\frac{\alpha - \gamma z}{\delta z - \beta}= αˉγˉzˉδˉzˉβˉ\frac{\bar{\alpha} - \bar{\gamma}\bar{z}}{\bar{\delta}\bar{z} - \bar{\beta}}

Ž (a – gz)(δˉzˉ\bar{\delta}\bar{z}βˉ\bar{\beta}) = (αˉ\bar{\alpha}γˉzˉ\bar{\gamma}\bar{z})(dz – b)

Ž (γˉ\bar{\gamma}d – gδˉ\bar{\delta})zzˉ\bar{z}+(gβˉ\bar{\beta}αˉ\bar{\alpha}d)z + (aδˉ\bar{\delta} – bγˉ\bar{\gamma})zˉ\bar{z}

= (aβˉ\bar{\beta}αˉ\bar{\alpha}b)….(1)

Since γδ\frac{\gamma}{\delta} is real, γδ\frac{\gamma}{\delta} = γˉδˉ\frac{\bar{\gamma}}{\bar{\delta}} or gδˉ\bar{\delta} – dγˉ\bar{\gamma} = 0

Therefore (1) can be written as aˉ\bar{a}z + azˉ\bar{z} = c ...(2)

where a = i(aδˉ\bar{\delta} – bγˉ\bar{\gamma}) and c = i(αˉ\bar{\alpha}b – aβˉ\bar{\beta})

Note that a ¹ 0 for if a = 0 then

aδˉ\bar{\delta} – bγˉ\bar{\gamma} = 0 Ž αβ\frac{\alpha}{\beta} = γˉδˉ\frac{\bar{\gamma}}{\bar{\delta}} = γδ\frac{\gamma}{\delta} [Q γδ\frac{\gamma}{\delta} is real]

Ž ad – bg = 0,

which is against hypothesis.

Also, note that c = i(αˉ\bar{\alpha}b – aβˉ\bar{\beta}) is a purely real number.

Thus, z = α+βtγ+δt\frac{\alpha + \beta t}{\gamma + \delta t} represents a straight line.