Question
Question: If a, b, g are the roots of x<sup>3</sup> + px<sup>2</sup> + q = 0, where q ¹ 0, then D = \(\left| \...
If a, b, g are the roots of x3 + px2 + q = 0, where q ¹ 0, then D = 1/α1/β1/γ1/β1/γ1/α1/γ1/α1/β equals-
A
–p/q
B
1/q
C
p2/q
D
None of these
Answer
None of these
Explanation
Solution
We have bg + ga + ab = 0 We can write D as
D= α3β3γ31 βγγααβγααββγαββγγα = α3β3γ31
\beta\gamma + \gamma\alpha + \alpha\beta & \gamma\alpha & \alpha\beta \\ \gamma\alpha + \alpha\beta + \beta\gamma & \alpha\beta & \beta\gamma \\ \alpha\beta + \beta\gamma + \gamma\alpha & \beta\gamma & \gamma\alpha \end{matrix} \right|$$ [using C<sub>1</sub> ® C<sub>1</sub> + C<sub>2</sub> + C<sub>3</sub>]=$\frac{1}{\alpha^{3}\beta^{3}\gamma^{3}}$ $\left| \begin{matrix} 0 & \gamma\alpha & \alpha\beta \\ 0 & \alpha\beta & \beta\gamma \\ 0 & \beta\gamma & \gamma\alpha \end{matrix} \right|$= 0 [all zero property].