Solveeit Logo

Question

Question: If a, b, g are the roots of x<sup>3</sup> + ax<sup>2</sup> + b = 0, then the determinant D = \(\lef...

If a, b, g are the roots of x3 + ax2 + b = 0, then the

determinant D = αβγβγαγαβ\left| \begin{matrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{matrix} \right|equals:

A

–a3

B

a3 –3b

C

a2 –3b

D

a3

Answer

a3

Explanation

Solution

a + b + g = –a, αβ=0\sum_{}^{}{\alpha\beta = 0}

using R1 ® R1 + R2 + R3

D= α+β+γα+β+γα+β+γβγαγαβ\left| \begin{matrix} \alpha + \beta + \gamma & \alpha + \beta + \gamma & \alpha + \beta + \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{matrix} \right|D = – a 111βγαγαβ\left| \begin{matrix} 1 & 1 & 1 \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{matrix} \right|

Apply C2 ® C2 – C1, C3 ® C3 – C1

or D = – a 100βγβαβγαγβγ\left| \begin{matrix} 1 & 0 & 0 \\ \beta & \gamma - \beta & \alpha - \beta \\ \gamma & \alpha - \gamma & \beta - \gamma \end{matrix} \right|