Solveeit Logo

Question

Question: If a, b, g are the roots of equation x<sup>3</sup> – 3x<sup>2</sup> + 3x + 7 = 0 and w is cube roots...

If a, b, g are the roots of equation x3 – 3x2 + 3x + 7 = 0 and w is cube roots of unity then the value of α1β1\frac{\alpha - 1}{\beta - 1} + β1γ1\frac{\beta - 1}{\gamma - 1}+ γ1α1\frac{\gamma - 1}{\alpha - 1} is-

A

w2

B

2w2

C

3w2

D

–3w2

Answer

3w2

Explanation

Solution

Sol. x3 – 3x2 + 3x + 7 = 0

Ž (x – 1)3 = –8

Ž x12\frac{x - 1}{- 2} = (1)1/3 Ž 1, w, w2

a = –1, b = 1– 2w, g = 1 – 2w2

\ E = 22ω\frac{- 2}{- 2\omega}+ 22ω2\frac{- 2}{- 2\omega^{2}}+ 2ω22\frac{- 2\omega^{2}}{- 2}

= 1ω\frac{1}{\omega} + 1ω\frac{1}{\omega} + 1ω\frac{1}{\omega} = 3ω\frac{3}{\omega} = 3w2 .