Solveeit Logo

Question

Mathematics Question on complex numbers

If α,β,γ α,β,γ are the cube roots of 2-2 ,then the value of xα+yβ+zγ/xβ+yγ+zαxα+yβ+zγ/xβ+yγ+zα is (x,y,zx,y,z are variables)

A

$$eiπ/3e^{ iπ/3}

B

e2πi/3e^{2πi/3}

C

11

D

1-1

E

e4iπ/3e^{ 4iπ/3}

Answer

e4iπ/3e^{ 4iπ/3}

Explanation

Solution

xα+yβ+zγxβ+yγ+zα\dfrac{ xα + yβ + zγ }{xβ + yγ + zα }

=x(2)1/3+y(21/3ω)+z(21/3ω2)x(21/3ω)+y(21/3ω2)+z(2)1/3=\dfrac{x(−2)^{1/3} + y (−2^{1/3}ω ) + z ( −2^{1/3}ω 2 )} {x (−2^{1/3}ω) + y (−2^{1/3}ω^2 ) + z(−2)^{1/3} }

=(2)1/3(x+yω+zω2)ω21/3(xω+yω2+z)ω= \dfrac{(−2)^{1/3}(x + yω + zω^2 )ω}{ −2^{1/3}(xω+ yω^2 +z) ω }
=1ω=ω3ω=ω2= 1 ω = \dfrac{ω ^3}{ω} = ω^2
=e4πi/3= e^{4πi/3}
So, the correct option is (E) : e4πi/3e^{4πi/3}