Solveeit Logo

Question

Question: If a, b, g are roots of the equation x<sup>3</sup> + px<sup>2</sup> + q = 0 where q ¹ 0 then D = \(\...

If a, b, g are roots of the equation x3 + px2 + q = 0 where q ¹ 0 then D = 1α1β1γ1β1γ1α1γ1α1β\left| \begin{matrix} \frac{1}{\alpha} & \frac{1}{\beta} & \frac{1}{\gamma} \\ \frac{1}{\beta} & \frac{1}{\gamma} & \frac{1}{\alpha} \\ \frac{1}{\gamma} & \frac{1}{\alpha} & \frac{1}{\beta} \end{matrix} \right|

A

pq\frac{p}{q}

B

1q\frac{1}{q}

C

p2q\frac{p^{2}}{q}

D

None

Answer

None

Explanation

Solution

S a = – p, S a b = 0, a b g = – q

D=(1α+1β+1γ)\left( \frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma } \right) 11/β1/γ11/γ1/α11/α1/β\left| \begin{matrix} 1 & 1/\beta & 1/\gamma \\ 1 & 1/\gamma & 1/\alpha \\ 1 & 1/\alpha & 1/\beta \end{matrix} \right|= Σαβαβγ\frac { \Sigma \alpha \beta } { \alpha \beta \gamma } 11/β1/γ11/γ1/α11/α1/β\left| \begin{matrix} 1 & 1/\beta & 1/\gamma \\ 1 & 1/\gamma & 1/\alpha \\ 1 & 1/\alpha & 1/\beta \end{matrix} \right|= 0