Question
Question: If \[a,b,c,x,y,z\in \mathbb{R}\] then \[\left| \begin{matrix} {{\left( a-x \right)}^{2}} & {{...
If a,b,c,x,y,z∈R then
{{\left( a-x \right)}^{2}} & {{\left( b-x \right)}^{2}} & {{\left( c-x \right)}^{2}} \\\ {{\left( a-y \right)}^{2}} & {{\left( b-y \right)}^{2}} & {{\left( c-y \right)}^{2}} \\\ {{\left( a-z \right)}^{2}} & {{\left( b-z \right)}^{2}} & {{\left( c-z \right)}^{2}} \\\ \end{matrix} \right|=\left| \begin{matrix} {{\left( 1+ax \right)}^{2}} & {{\left( 1+bx \right)}^{2}} & {{\left( 1+cx \right)}^{2}} \\\ {{\left( 1+ay \right)}^{2}} & {{\left( 1+by \right)}^{2}} & {{\left( 1+cy \right)}^{2}} \\\ {{\left( 1+az \right)}^{2}} & {{\left( 1+bz \right)}^{2}} & {{\left( 1+cz \right)}^{2}} \\\ \end{matrix} \right|$$ (a) True (b) FalseExplanation
Solution
We solve this problem by using the product of determinants. We take the LHS and expand the square and we divide it into the product of two determinants.
We use the formulas of square of sum and difference of two numbers that is
(x+y)2=x2+2xy+y2
(x−y)2=x2−2xy+y2
Then we use the possible transformations of rows and columns to get the RHS. We use one of the standard conditions that when we interchange the columns or rows in odd number of times then we get a negative sign out.
Complete step by step answer:
We are given that