Solveeit Logo

Question

Question: If a, b, c, x, y, z are non-zero real numbers and $\frac{x^2(y+z)}{a^3} = \frac{y^2(x+z)}{b^3} = \fr...

If a, b, c, x, y, z are non-zero real numbers and x2(y+z)a3=y2(x+z)b3=z2(x+y)c3=xyzabc=1\frac{x^2(y+z)}{a^3} = \frac{y^2(x+z)}{b^3} = \frac{z^2(x+y)}{c^3} = \frac{xyz}{abc} = 1 then the value of (a3+b3+c3+abc)(a^3 + b^3 + c^3 + abc) equals

A

0

Answer

0

Explanation

Solution

The problem provides us with the following conditions:

  1. a, b, c, x, y, z are non-zero real numbers.
  2. x2(y+z)a3=1    a3=x2(y+z)\frac{x^2(y+z)}{a^3} = 1 \implies a^3 = x^2(y+z) (Equation 1)
  3. y2(x+z)b3=1    b3=y2(x+z)\frac{y^2(x+z)}{b^3} = 1 \implies b^3 = y^2(x+z) (Equation 2)
  4. z2(x+y)c3=1    c3=z2(x+y)\frac{z^2(x+y)}{c^3} = 1 \implies c^3 = z^2(x+y) (Equation 3)
  5. xyzabc=1    abc=xyz\frac{xyz}{abc} = 1 \implies abc = xyz (Equation 4)

We need to find the value of the expression (a3+b3+c3+abc)(a^3 + b^3 + c^3 + abc).

Substitute the values of a3,b3,c3a^3, b^3, c^3 from Equations 1, 2, 3 and abcabc from Equation 4 into the expression:

a3+b3+c3+abc=x2(y+z)+y2(x+z)+z2(x+y)+xyza^3 + b^3 + c^3 + abc = x^2(y+z) + y^2(x+z) + z^2(x+y) + xyz

Expand the terms:

=(x2y+x2z)+(y2x+y2z)+(z2x+z2y)+xyz= (x^2y + x^2z) + (y^2x + y^2z) + (z^2x + z^2y) + xyz =x2y+x2z+y2x+y2z+z2x+z2y+xyz= x^2y + x^2z + y^2x + y^2z + z^2x + z^2y + xyz

Let's try to factorize this expression. We can group terms and factor out common factors.

=(x2y+y2x)+(x2z+z2x)+(y2z+z2y)+xyz= (x^2y + y^2x) + (x^2z + z^2x) + (y^2z + z^2y) + xyz =xy(x+y)+xz(x+z)+yz(y+z)+xyz= xy(x+y) + xz(x+z) + yz(y+z) + xyz

Consider the product (x+y)(y+z)(z+x)(x+y)(y+z)(z+x):

(x+y)(y+z)(z+x)=(xy+xz+y2+yz)(z+x)(x+y)(y+z)(z+x) = (xy + xz + y^2 + yz)(z+x) =xyz+x2y+xz2+x2z+y2z+xy2+yz2+xyz= xyz + x^2y + xz^2 + x^2z + y^2z + xy^2 + yz^2 + xyz =x2y+xy2+x2z+xz2+y2z+yz2+2xyz= x^2y + xy^2 + x^2z + xz^2 + y^2z + yz^2 + 2xyz

Comparing this with our expression x2y+x2z+y2x+y2z+z2x+z2y+xyzx^2y + x^2z + y^2x + y^2z + z^2x + z^2y + xyz:

We can see that the expression is equal to (x+y)(y+z)(z+x)xyz(x+y)(y+z)(z+x) - xyz.

So, a3+b3+c3+abc=(x+y)(y+z)(z+x)xyza^3 + b^3 + c^3 + abc = (x+y)(y+z)(z+x) - xyz.

Now, let's use the given conditions again.

Multiply Equations 1, 2, and 3:

a3b3c3=x2(y+z)y2(x+z)z2(x+y)a^3 b^3 c^3 = x^2(y+z) \cdot y^2(x+z) \cdot z^2(x+y) (abc)3=x2y2z2(x+y)(y+z)(z+x)(abc)^3 = x^2 y^2 z^2 (x+y)(y+z)(z+x)

From Equation 4, we know abc=xyzabc = xyz. Substitute this into the equation above:

(xyz)3=x2y2z2(x+y)(y+z)(z+x)(xyz)^3 = x^2 y^2 z^2 (x+y)(y+z)(z+x) x3y3z3=x2y2z2(x+y)(y+z)(z+x)x^3 y^3 z^3 = x^2 y^2 z^2 (x+y)(y+z)(z+x)

Since x, y, z are non-zero real numbers, x2y2z20x^2y^2z^2 \neq 0. We can divide both sides by x2y2z2x^2y^2z^2:

xyz=(x+y)(y+z)(z+x)xyz = (x+y)(y+z)(z+x)

Now, substitute this result back into the expression for a3+b3+c3+abca^3 + b^3 + c^3 + abc:

a3+b3+c3+abc=(x+y)(y+z)(z+x)xyza^3 + b^3 + c^3 + abc = (x+y)(y+z)(z+x) - xyz

Since (x+y)(y+z)(z+x)=xyz(x+y)(y+z)(z+x) = xyz, we have:

a3+b3+c3+abc=xyzxyza^3 + b^3 + c^3 + abc = xyz - xyz a3+b3+c3+abc=0a^3 + b^3 + c^3 + abc = 0

The final answer is 0\boxed{0}.