Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If A+B+C=π,A+B+C=\pi , then tanA2tanB2+tanB2tanC2+tanC2+tanC2tanA2\tan \frac{A}{2}\tan \frac{B}{2}+\tan \frac{B}{2}\tan \frac{C}{2}+\tan \frac{C}{2}+\tan \frac{C}{2}\tan \frac{A}{2} is equal to

A

33

B

22

C

11

D

00

Answer

11

Explanation

Solution

tanA2.tanB2+tanB2.tanC2+tanC2.tanA2\tan \frac{A}{2}.\tan \frac{B}{2}+\tan \frac{B}{2}.\tan \frac{C}{2}+\tan \frac{C}{2}.\tan \frac{A}{2}
(sb)(sc)s(sa)(sa)(sc)s(sb)\sqrt{\frac{(s-b)\,(s-c)}{s(s-a)}}\,\,\sqrt{\frac{(s-a)\,(s-c)}{s\,(s-b)}}
+(sa)(sc)s(sb)(sa)(sb)s(sa)+\sqrt{\frac{(s-a)\,(s-c)}{s(s-b)}}\,\,\sqrt{\frac{(s-a)\,(s-b)}{s\,(s-a)}}
=scs+sas+sbs=\frac{s-c}{s}+\frac{s-a}{s}+\frac{s-b}{s}
=3s(a+b+c)s=3s2ss=\frac{3s-(a+b+c)}{s}=\frac{3s-2s}{s}
(2s=a+b+c)(\because \,\,2s=a+b+c)
=ss=1=\frac{s}{s}=1