Question
Mathematics Question on Trigonometric Functions
If A+B+C=π, then tan2Atan2B+tan2Btan2C+tan2C+tan2Ctan2A is equal to
A
3
B
2
C
1
D
0
Answer
1
Explanation
Solution
tan2A.tan2B+tan2B.tan2C+tan2C.tan2A
s(s−a)(s−b)(s−c)s(s−b)(s−a)(s−c)
+s(s−b)(s−a)(s−c)s(s−a)(s−a)(s−b)
=ss−c+ss−a+ss−b
=s3s−(a+b+c)=s3s−2s
(∵2s=a+b+c)
=ss=1