Solveeit Logo

Question

Question: If A + B + C = \(\pi \), then prove that \(\cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left(...

If A + B + C = π\pi , then prove that cos(2A)+cos(2B)+cos(2C)=14cos(A)cos(B)cos(C)\cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=-1-4\cos \left( A \right)\cos \left( B \right)\cos \left( C \right).

Explanation

Solution

Hint: We will use some trigonometric formulas given bycos(B)+cos(C)=2cos(B+C2)cos(BC2)\cos \left( B \right)+\cos \left( C \right)=2\cos \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right) and cos(2A)=2cos2(A)1\cos \left( 2A \right)=2{{\cos }^{2}}\left( A \right)-1 for solving the expression. Also, we will apply cos(B+C)=cosBcosCsinBsinC,cos(BC)=cosBcosC+sinAsinB\cos \left( B+C \right)=\cos B\cos C-\sin B\sin C,\cos \left( B-C \right)=\cos B\cos C+\sin A\sin B to solve the question further. The property A + B + C = π\pi , given to us is going to be very useful here for making substitutions in terms of π\pi .

Complete step-by-step answer:

We come to know that the angles satisfy the property of a triangle in which the sum of interior angles of a triangle is equal to π\pi . Here, we are given this property as A + B + C = π\pi . Now, we will consider the equation cos(2A)+cos(2B)+cos(2C)=14cos(A)cos(B)cos(C)\cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=-1-4\cos \left( A \right)\cos \left( B \right)\cos \left( C \right)...(i). Now we will consider the left side of the equation (i). That is we now have cos(2A)+cos(2B)+cos(2C)\cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right).
Now, we will use the formula given by cos(B)+cos(C)=2cos(B+C2)cos(BC2)\cos \left( B \right)+\cos \left( C \right)=2\cos \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right) in the expression cos(2A)+cos(2B)+cos(2C)\cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right). Therefore, we get
cos(2A)+cos(2B)+cos(2C)=cos(2A)+2cos(2B+2C2)cos(2B2C2) cos(2A)+cos(2B)+cos(2C)=cos(2A)+2cos(B+C)cos(BC) \begin{aligned} & \cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=\cos \left( 2A \right)+2\cos \left( \dfrac{2B+2C}{2} \right)\cos \left( \dfrac{2B-2C}{2} \right) \\\ & \Rightarrow \cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=\cos \left( 2A \right)+2\cos \left( B+C \right)\cos \left( B-C \right) \\\ \end{aligned}.
Now we will apply the formula given by cos(2A)=2cos2(A)1\cos \left( 2A \right)=2{{\cos }^{2}}\left( A \right)-1 in the above trigonometric equation. Therefore, we get cos(2A)+cos(2B)+cos(2C)=2cos2(A)1+2cos(B+C)cos(BC)\cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=2{{\cos }^{2}}\left( A \right)-1+2\cos \left( B+C \right)\cos \left( B-C \right)...(ii).
Since, we are given that A + B + C = π\pi . Now, we will take the term A to the right side of the equation. Thus, we get B + C = π\pi - A. After this step we will substitute this value in the equation (ii). Therefore, we now have cos(2A)+cos(2B)+cos(2C)=2cos2(A)1+2cos(πA)cos(BC)\cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=2{{\cos }^{2}}\left( A \right)-1+2\cos \left( \pi -A \right)\cos \left( B-C \right)...(iii). As we know that the angle πA\pi -A lies in the second quadrant also we know that cosine is negative in the second quadrant thus the value of cos(πA)\cos \left( \pi -A \right) becomes cos(A)-\cos \left( A \right). Now we are going to put this value in equation (iii). This results into cos(2A)+cos(2B)+cos(2C)=2cos2(A)1+2(cos(A))cos(BC) cos(2A)+cos(2B)+cos(2C)=2cos2(A)12cos(A)cos(BC) \begin{aligned} & \cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=2{{\cos }^{2}}\left( A \right)-1+2\left( -\cos \left( A \right) \right)\cos \left( B-C \right) \\\ & \Rightarrow \cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=2{{\cos }^{2}}\left( A \right)-1-2\cos \left( A \right)\cos \left( B-C \right) \\\ \end{aligned}
Now we will take the term – 1 to the right most side of the right hand side only. Thus, we now have cos(2A)+cos(2B)+cos(2C)=2cos2(A)2cos(A)cos(BC)1\cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=2{{\cos }^{2}}\left( A \right)-2\cos \left( A \right)\cos \left( B-C \right)-1. At this step we will take 2cos(A)2\cos \left( A \right) term as a common term. So, we get cos(2A)+cos(2B)+cos(2C)=2cos(A)[cos(A)cos(BC)]1\cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=2\cos \left( A \right)\left[ \cos \left( A \right)-\cos \left( B-C \right) \right]-1...(iv).
We can clearly see that we are halfway proving cos(2A)+cos(2B)+cos(2C)=14cos(A)cos(B)cos(C)\cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=-1-4\cos \left( A \right)\cos \left( B \right)\cos \left( C \right). We only need to make the rest of the expression, except 1, into 4cos(A)cos(B)cos(C)-4\cos \left( A \right)\cos \left( B \right)\cos \left( C \right). For this we will use A + B + C = π\pi information again by keeping B and C to the right side of the equal sign. So, we will now substitute A = - (B + C). This results into
cos(2A)+cos(2B)+cos(2C)=2cos(A)[cos(π(B+C))cos(BC)]1\cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=2\cos \left( A \right)\left[ \cos \left( \pi -\left( B+C \right) \right)-\cos \left( B-C \right) \right]-1and by cos(πθ)=cos(θ)\cos \left( \pi -\theta \right)=-\cos \left( \theta \right) this gives cos(2A)+cos(2B)+cos(2C)=2cos(A)[cos(B+C)cos(BC)]1\cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=2\cos \left( A \right)\left[ -\cos \left( B+C \right)-\cos \left( B-C \right) \right]-1
By the formulas cos(B+C)=cosBcosCsinBsinC,cos(BC)=cosBcosC+sinAsinB\cos \left( B+C \right)=\cos B\cos C-\sin B\sin C,\cos \left( B-C \right)=\cos B\cos C+\sin A\sin B into the equation we will have
cos(2A)+cos(2B)+cos(2C)=2cos(A)[(cosBcosCsinBsinC)(cosBcosC+sinBsinC)]1 cos(2A)+cos(2B)+cos(2C)=2cos(A)[cosBcosC+sinBsinCcosBcosCsinBsinC]1 cos(2A)+cos(2B)+cos(2C)=2cos(A)[cosBcosCcosBcosC]1 cos(2A)+cos(2B)+cos(2C)=2cos(A)[2cosBcosC]1 cos(2A)+cos(2B)+cos(2C)=4cos(A)cosBcosC1 \begin{aligned} & \cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=2\cos \left( A \right)\left[ -\left( \cos B\cos C-\sin B\sin C \right)-\left( \cos B\cos C+\sin B\sin C \right) \right]-1 \\\ & \Rightarrow \cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=2\cos \left( A \right)\left[ -\cos B\cos C+\sin B\sin C-\cos B\cos C-\sin B\sin C \right]-1 \\\ & \Rightarrow \cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=2\cos \left( A \right)\left[ -\cos B\cos C-\cos B\cos C \right]-1 \\\ & \Rightarrow \cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=2\cos \left( A \right)\left[ -2\cos B\cos C \right]-1 \\\ & \Rightarrow \cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=-4\cos \left( A \right)\cos B\cos C-1 \\\ \end{aligned}
Clearly we can see that the expression is equal to the right side of the equation cos(2A)+cos(2B)+cos(2C)=14cos(A)cos(B)cos(C)\cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=-1-4\cos \left( A \right)\cos \left( B \right)\cos \left( C \right).
Hence, we have proved the required expression.

Note: We can also use the formula by cos(B)+cos(C)=2cos(B+C2)cos(BC2)\cos \left( B \right)+\cos \left( C \right)=2\cos \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right) as in the form of by cos(A)+cos(B)=2cos(A+B2)cos(AB2)\cos \left( A \right)+\cos \left( B \right)=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) and after that we can also put by cos(2C)=2cos2(C)1\cos \left( 2C \right)=2{{\cos }^{2}}\left( C \right)-1 instead of by cos(2A)=2cos2(A)1\cos \left( 2A \right)=2{{\cos }^{2}}\left( A \right)-1. Also we can use the formula cos(A)+cos(B)=2cos(A+B2)cos(AB2)\cos \left( A \right)+\cos \left( B \right)=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) and cos(A)cos(B)=2sin(A+B2)sin(AB2)\cos \left( A \right)-\cos \left( B \right)=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) formulas instead of cos(B+C)=cosBcosCsinBsinC,cos(BC)=cosBcosC+sinAsinB\cos \left( B+C \right)=\cos B\cos C-\sin B\sin C,\cos \left( B-C \right)=\cos B\cos C+\sin A\sin Bwhile solving cos(2A)+cos(2B)+cos(2C)=2cos(A)[cos(B+C)cos(BC)]1\cos \left( 2A \right)+\cos \left( 2B \right)+\cos \left( 2C \right)=2\cos \left( A \right)\left[ -\cos \left( B+C \right)-\cos \left( B-C \right) \right]-1. Solving the question like this also gives the required answer.