Question
Question: If \(A + B + C = \pi,\) then \(\tan ^ { 2 } \frac { A } { 2 } + \tan ^ { 2 } \frac { B } { 2 } +\) \...
If A+B+C=π, then tan22A+tan22B+ tan22C is always
A
≤1
B
≥1
C
= 0
D
= 1
Answer
≥1
Explanation
Solution
tan(2A+2B+2C)=1−S2S1−S3=tan2π=∞
∴S2=1 or xy+yz+zx=1, where x=tan2Aetc.
Now (x−y)2+(y−z)2+(z−x)2≥0or
2∑x2−2∑xy≥0⇒∑x2≥1. {∵∑xy=1}