Solveeit Logo

Question

Question: If \(A + B + C = \pi,\) then \(\tan ^ { 2 } \frac { A } { 2 } + \tan ^ { 2 } \frac { B } { 2 } +\) \...

If A+B+C=π,A + B + C = \pi, then tan2A2+tan2B2+\tan ^ { 2 } \frac { A } { 2 } + \tan ^ { 2 } \frac { B } { 2 } + tan2C2\tan^{2}\frac{C}{2} is always

A

1\leq 1

B

1\geq 1

C

= 0

D

= 1

Answer

1\geq 1

Explanation

Solution

tan(A2+B2+C2)=S1S31S2=tanπ2=\tan\left( \frac{A}{2} + \frac{B}{2} + \frac{C}{2} \right) = \frac{S_{1} - S_{3}}{1 - S_{2}} = \tan\frac{\pi}{2} = \infty

S2=1\therefore S_{2} = 1 or xy+yz+zx=1xy + yz + zx = 1, where x=tanA2x = \tan\frac{A}{2}etc.

Now (xy)2+(yz)2+(zx)20(x - y)^{2} + (y - z)^{2} + (z - x)^{2} \geq 0or

2x22xy0x212\sum x^{2} - 2\sum xy \geq 0 \Rightarrow \sum x^{2} \geq 1. {xy=1}\{\because\sum xy = 1\}