Solveeit Logo

Question

Question: If \(A + B + C = \pi,\) then \(\cos{}2A + \cos{}2B + \cos{}2C =\)...

If A+B+C=π,A + B + C = \pi, then cos2A+cos2B+cos2C=\cos{}2A + \cos{}2B + \cos{}2C =

A

1+4cosAcosBsinC1 + 4\cos A\cos B\sin C

B

1+4sinAsinBcosC- 1 + 4\sin A\sin B\cos C

C

14cosA⥂⥂cosBcosC- 1 - 4\cos A ⥂ ⥂ \cos B\cos C

D

None of these

Answer

14cosA⥂⥂cosBcosC- 1 - 4\cos A ⥂ ⥂ \cos B\cos C

Explanation

Solution

L.H.S. =2cos(A+B)cos(AB)+(2cos2C1)= 2\cos(A + B)\cos(A - B) + (2\cos^{2}C - 1)

=12cosCcos(AB)+2cos2C= - 1 - 2\cos C\cos(A - B) + 2\cos^{2}C

=12cosC[cos(AB)+cos(A+B)]= - 1 - 2\cos C\lbrack\cos(A - B) + \cos(A + B)\rbrack

=14cosAcosBcosC= - 1 - 4\cos A\cos B\cos C.