Question
Question: If \(A+B+C=\pi \), then \(\cos 2A+\cos 2B+\cos 2C\) is equal to A. \(1+4\cos A\cos B\cos C\) B...
If A+B+C=π, then cos2A+cos2B+cos2C is equal to
A. 1+4cosAcosBcosC
B. −1+4sinAsinBsinC
C. −1−4cosAcosBcosC
D. None of these
Solution
We first take the sum of angles for the trigonometric ratios. We also use the multiple angle formula of cos2X=2cos2X−1. We convert them to their multiple forms. We take 2cosC common and find the required solution.
Complete step by step answer:
It is given that A+B+C=π. We get A+B=π−C and C=π−(A+B).
We are going to use the formulas of sum of angles for the trigonometric ratios. We have cosX+cosY=2cos(2X+Y)cos(2X−Y).
We use the representation of X=2A;Y=2B and get
cos2A+cos2B=2cos(22A+2B)sin(22A−2B) ⇒cos2A+cos2B=2cos(A+B)cos(A−B)
We change the angle and get
2cos(A+B)cos(A−B)=2cos(π−C)cos(A−B) ⇒2cos(A+B)cos(A−B)=−2cosCcos(A−B)
We also use the multiple angle formula of cos2C=2cos2C−1. Therefore,
cos2A+cos2B+cos2C=−2cosCcos(A−B)+2cos2C−1
We take 2cosC common and get
−2cosCcos(A−B)+2cos2C−1=−1+2cosC[cosC−cos(A−B)]
We again change the cosC in the bracket.
cosC=cos[π−(A+B)]=−cos(A+B).
⇒cos2A+cos2B+cos2C=−1+2cosC[−cos(A+B)−cos(A−B)] ⇒cos2A+cos2B+cos2C=−1−2cosC[cos(A+B)+cos(A−B)]
We represent X=A+B;Y=A−B in cosX+cosY=2cos(2X+Y)cos(2X−Y) to get
cosX+cosY=2cos(2A+B+A−B)cos(2A+B−A+B) ⇒cosX+cosY=2cosAcosB
Therefore,
cos2A+cos2B+cos2C=−1−2cosC[2cosAcosB] ∴cos2A+cos2B+cos2C=−1−4cosAcosBcosC
Hence, the correct option is C.
Note: Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to −∞≤x≤∞. In that case we have to use the formula x=nπ±a for cos(x)=cosa where 0≤a≤π.