Solveeit Logo

Question

Question: If \(A+B+C=\pi \), then \(\cos 2A+\cos 2B+\cos 2C\) is equal to A. \(1+4\cos A\cos B\cos C\) B...

If A+B+C=πA+B+C=\pi , then cos2A+cos2B+cos2C\cos 2A+\cos 2B+\cos 2C is equal to
A. 1+4cosAcosBcosC1+4\cos A\cos B\cos C
B. 1+4sinAsinBsinC-1+4\sin A\sin B\sin C
C. 14cosAcosBcosC-1-4\cos A\cos B\cos C
D. None of these

Explanation

Solution

We first take the sum of angles for the trigonometric ratios. We also use the multiple angle formula of cos2X=2cos2X1\cos 2X=2{{\cos }^{2}}X-1. We convert them to their multiple forms. We take 2cosC2\cos C common and find the required solution.

Complete step by step answer:
It is given that A+B+C=πA+B+C=\pi . We get A+B=πCA+B=\pi -C and C=π(A+B)C=\pi -\left( A+B \right).
We are going to use the formulas of sum of angles for the trigonometric ratios. We have cosX+cosY=2cos(X+Y2)cos(XY2)\cos X+\cos Y=2\cos \left( \dfrac{X+Y}{2} \right)\cos \left( \dfrac{X-Y}{2} \right).
We use the representation of X=2A;Y=2BX=2A;Y=2B and get
cos2A+cos2B=2cos(2A+2B2)sin(2A2B2) cos2A+cos2B=2cos(A+B)cos(AB) \cos 2A+\cos 2B =2\cos \left( \dfrac{2A+2B}{2} \right)\sin \left( \dfrac{2A-2B}{2} \right) \\\ \Rightarrow \cos 2A+\cos 2B =2\cos \left( A+B \right)\cos \left( A-B \right) \\\
We change the angle and get
2cos(A+B)cos(AB)=2cos(πC)cos(AB) 2cos(A+B)cos(AB)=2cosCcos(AB) 2\cos \left( A+B \right)\cos \left( A-B \right) =2\cos \left( \pi -C \right)\cos \left( A-B \right) \\\ \Rightarrow 2\cos \left( A+B \right)\cos \left( A-B \right) =-2\cos C\cos \left( A-B \right) \\\
We also use the multiple angle formula of cos2C=2cos2C1\cos 2C=2{{\cos }^{2}}C-1. Therefore,
cos2A+cos2B+cos2C=2cosCcos(AB)+2cos2C1\cos 2A+\cos 2B+\cos 2C =-2\cos C\cos \left( A-B \right)+2{{\cos }^{2}}C-1
We take 2cosC2\cos C common and get
2cosCcos(AB)+2cos2C1=1+2cosC[cosCcos(AB)] -2\cos C\cos \left( A-B \right)+2{{\cos }^{2}}C-1 =-1+2\cos C\left[ \cos C-\cos \left( A-B \right) \right] \\\
We again change the cosC\cos C in the bracket.
cosC=cos[π(A+B)]=cos(A+B)\cos C=\cos \left[ \pi -\left( A+B \right) \right]=-\cos \left( A+B \right).
cos2A+cos2B+cos2C=1+2cosC[cos(A+B)cos(AB)] cos2A+cos2B+cos2C=12cosC[cos(A+B)+cos(AB)] \Rightarrow \cos 2A+\cos 2B+\cos 2C =-1+2\cos C\left[ -\cos \left( A+B \right)-\cos \left( A-B \right) \right] \\\ \Rightarrow \cos 2A+\cos 2B+\cos 2C =-1-2\cos C\left[ \cos \left( A+B \right)+\cos \left( A-B \right) \right] \\\
We represent X=A+B;Y=ABX=A+B;Y=A-B in cosX+cosY=2cos(X+Y2)cos(XY2)\cos X+\cos Y=2\cos \left( \dfrac{X+Y}{2} \right)\cos \left( \dfrac{X-Y}{2} \right) to get
cosX+cosY=2cos(A+B+AB2)cos(A+BA+B2) cosX+cosY=2cosAcosB \cos X+\cos Y =2\cos \left( \dfrac{A+B+A-B}{2} \right)\cos \left( \dfrac{A+B-A+B}{2} \right) \\\ \Rightarrow \cos X+\cos Y =2\cos A\cos B \\\
Therefore,
cos2A+cos2B+cos2C=12cosC[2cosAcosB] cos2A+cos2B+cos2C=14cosAcosBcosC\cos 2A+\cos 2B+\cos 2C =-1-2\cos C\left[ 2\cos A\cos B \right] \\\ \therefore \cos 2A+\cos 2B+\cos 2C =-1-4\cos A\cos B\cos C

Hence, the correct option is C.

Note: Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to x-\infty \le x\le \infty . In that case we have to use the formula x=nπ±ax=n\pi \pm a for cos(x)=cosa\cos \left( x \right)=\cos a where 0aπ0\le a\le \pi .