Question
Question: If \(A+B+C=\pi \), then \({{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1-2\cos A\cos B\cos C\), A....
If A+B+C=π, then cos2A+cos2B+cos2C=1−2cosAcosBcosC,
A. True
B. False
Solution
We start solving the problem by replacing by recalling the identity ′′cos2θ=1−2cos2θ′′. We then substitute cos2A, cos2B and cos2C with 2(1+cos2A), 2(1+cos2B) and 2(1+cos2C) in the left hand side. We then use cosC+cosD=2cos(2C+D)cos(2C−D) to proceed further through the problem. We then use the given condition A+B+C=π and make subsequent calculations to get the required result.
Complete step by step answer:
According to the problem, we have given the condition A+B+C=π, then we need to prove cos2A+cos2B+cos2C=1−2cosAcosBcosC.
Proof:
⇒LHS=cos2A+cos2B+cos2C ---(1).
We know cos2θ=2cos2θ−1.
⇒2cos2θ=1+cos2θ.
Dividing both sides by 2, we will get,
⇒21+cos2θ=cos2θ.
We use this result to make replacements for cos2A, cos2Band cos2C in equation (1).
⇒LHS=(21+cos2A)+(21+cos2B)+(21+cos2C).
Taking all the constants terms together and all the terms containing cosine together, we will get,
⇒LHS=(21+21+21)+(2cos2A)+(2cos2B)+(2cos2C).
⇒LHS=(23)+(2cos2A)+(2cos2B)+(2cos2C).
Taking 21 common from last three terms, we will get,
⇒LHS=23+21[cos2A+cos2B+cos2C] ---(2).
We know that cosC+cosD=2cos(2C+D)cos(2C−D) and we use this result to calculate cos2A+cos2B.
So, cos2A+cos2B=2cos(22A+2B)cos(22A−2B)
⇒cos2A+cos2B=2cos(A+B)cos(A−B)
Replacing cos2A+cos2B with 2cos(A+B)cos(A−B) in equation (2) we get,
⇒LHS=23+21[2cos(A+B)cos(A−B)+cos2C].
We know, cos2C=2cos2C−1
⇒LHS=23+21[2cos(A+B)cos(A−B)+2cos2C−1].
⇒LHS=23+21×2cos(A+B)cos(A−B)+21×2cos2C−21.
Taking all the constant terms together, we will get,
⇒LHS=(23−21)+cos(A+B)cos(A−B)+cos2C.
⇒LHS=1+cos(A+B)cos(A−B)+cos2C.
According to the problem, we have A+B+C=π.
⇒A+B=π−C.
Taking cos both sides,
⇒cos(A+B)=cos(π−C).
⇒cos(A+B)=−cosC.
So, LHS will change to,
⇒LHS=1+[(−cosC)cos(A−B)+cos2C].
Taking (−cosC) common from the last two terms, we will get,
⇒LHS=1−cosC[cos(A−B)+cosC].
Now, replacing (−cosC) with cos(A+B), we will get, [As derived above cos(A+B)=−cosC].
⇒LHS=1−cosC[cos(A−B)+cos(A+B)].
Now, we use the u=identity cosC+cosD=2cos(2C+D)cos(2C−D).
⇒cos(A−B)+cos(A+B)=2cos[2A−B+A+B]cos[2(A−B)−(A+B)].
⇒cos(A−B)+cos(A+B)=2cosAcosB.
Putting this in LHS, we will get,
⇒LHS=1−cosC[2cosAcosB].
⇒LHS=1−2cosAcosBcosC=RHS.
Thus, the given statement is true.
Note:
We can solve this proof by assigning the values for the angles A, B and C which on adding give us π. We should make mistakes in signs and make multiplication operations which give us wrong results. We can also expect problems that contain sine, tangent functions in place of the cosine function given in the present problem.