Question
Question: If \(A+B+C=\pi \), prove that \(\cos 4A+\cos 4B+\cos 4C=-1+4\cos 2A\cos 2B\cos 2C\)....
If A+B+C=π, prove that cos4A+cos4B+cos4C=−1+4cos2Acos2Bcos2C.
Solution
Hint: For solving this question we will use some trigonometric formula like formula for cosC+cosD and cos2θ for simplifying the term written on the left-hand side. After that, we will prove it equal to the term on the right-hand side.
Complete step-by-step answer:
Given:
It is given that if A+B+C=π and we have to prove the following equation:
cos4A+cos4B+cos4C=−1+4cos2Acos2Bcos2C
Now, before we proceed we should know the following three formulas:
$\begin{aligned}
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)..........................\left( 1 \right) \\
& \cos 2\theta =2{{\cos }^{2}}\theta -1..............................................................\left( 2 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow 2\left( A+B \right)=2\pi -2C \\
& \Rightarrow \cos \left( 2\left( A+B \right) \right)=\cos \left( 2\pi -2C \right)=\cos
2C...........................\left( 3 \right) \\
\end{aligned}$
Now, we will be using the above three formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to cos4A+cos4B+cos4C so, using the formula from equation (1).
Then,
$\begin{aligned}
& \cos 4A+\cos 4B+\cos 4C \\
& \Rightarrow 2\cos \left( \dfrac{4A+4B}{2} \right)\cos \left( \dfrac{4A-4B}{2} \right)+\cos 4C \\
& \Rightarrow 2\cos \left( 2\left( A+B \right) \right)\cos \left( 2\left( A-B \right) \right)+\cos 4C \\
\end{aligned}$
Now, using the formula from equation (3) and equation (2) in the above equation. Then,
$\begin{aligned}
& 2\cos \left( 2\left( A+B \right) \right)\cos \left( 2\left( A-B \right) \right)+\cos 4C \\
& \Rightarrow 2\cos 2C\cos \left( 2\left( A-B \right) \right)+2{{\cos }^{2}}2C-1 \\
& \Rightarrow 2\cos 2C\left( \cos \left( 2\left( A-B \right) \right)+\cos 2C \right)-1 \\
& \Rightarrow 2\cos 2C\left( \cos \left( 2\left( A+B \right) \right)+\cos \left( 2\left( A-B \right) \right) \right)-1 \\
\end{aligned}$
Now, using formula from equation (1) in the above equation. Then,
$\begin{aligned}
& 2\cos 2C\left( \cos \left( 2\left( A+B \right) \right)+\cos \left( 2\left( A-B \right) \right) \right)-1 \\
& \Rightarrow 2\cos 2C\left( 2\cos \left( \dfrac{2A+2B+2A-2B}{2} \right)\cos \left( \dfrac{2A+2B-2A+2B}{2} \right) \right)-1 \\
& \Rightarrow 2\cos 2C\left( 2\cos 2A\cos 2B \right)-1 \\
& \Rightarrow -1+4\cos 2A\cos 2B\cos 2C \\
\end{aligned}$
Now, we can say that cos4A+cos4B+cos4C=−1+4cos2Acos2Bcos2C .
Thus, L.H.S=R.H.S.
Hence Proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification easier, we should also try to make use of trigonometric results like cos(π−θ)=−cosθ for making equations that will help us further in the solution. Moreover, the formulas like cosC+cosD and cos2θ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.