Question
Question: If \(A+B+C=\pi \), prove that \({{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C=1-2\sin A\sin B\cos C\)...
If A+B+C=π, prove that cos2A+cos2B−cos2C=1−2sinAsinBcosC.
Solution
Hint: For solving this question as there are squares of trigonometric ratios so, we will trigonometric formulas like formula for cos2θ and then further for simplifying the term written on the left-hand side we will use formulas for cosC+cosD, cosC−cosD and cos(π−θ). After that, we will prove the term on the left-hand side is equal to the term on the right-hand side.
Complete step-by-step answer:
Given:
It is given that if A+B+C=π and we have to prove the following equation:
cos2A+cos2B−cos2C=1−2sinAsinBcosC
Now, before we proceed we should know the following four formulas:
$\begin{aligned}
& \cos 2\theta =2{{\cos }^{2}}\theta -1 \\
& \Rightarrow 2{{\cos }^{2}}\theta =\cos 2\theta +1 \\
& \Rightarrow {{\cos }^{2}}\theta =\dfrac{\cos 2\theta +1}{2}................................\left( 1 \right) \\
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)..................\left( 2 \right) \\
& \cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right).................\left( 3 \right) \\
& A+B+C=\pi \\
& \Rightarrow A+B=\pi -C \\
& \Rightarrow \cos \left( A+B \right)=\cos \left( \pi -C \right)=-\cos C.............................\left( 4 \right) \\
\end{aligned}$
Now, we will be using the above four formulas to simplify the term on the left-hand side to prove the desired result.
Now, L.H.S is equal to cos2A+cos2B−cos2C so, using the formula from equation (1). Then,
$\begin{aligned}
& {{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C \\
& \Rightarrow \dfrac{1+\cos 2A}{2}+\dfrac{1+\cos 2B}{2}-{{\cos }^{2}}C \\
& \Rightarrow \dfrac{1}{2}+\dfrac{1}{2}+\dfrac{\left( \cos 2A+\cos 2B \right)}{2}-{{\cos }^{2}}C \\
& \Rightarrow 1+\dfrac{\left( \cos 2A+\cos 2B \right)}{2}-{{\cos }^{2}}C \\
\end{aligned}$
Now, using the formula from equation (2) in the above equation. Then,
$\begin{aligned}
& 1+\dfrac{\left( \cos 2A+\cos 2B \right)}{2}-{{\cos }^{2}}C \\
& \Rightarrow 1+\dfrac{1}{2}\left( 2\cos \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right) \right)-{{\cos }^{2}}C \\
& \Rightarrow 1+\cos \left( A+B \right)\cos \left( A-B \right)-{{\cos }^{2}}C \\
\end{aligned}$
Now, using the formula from equation (4) in the above equation. Then,
$\begin{aligned}
& 1+\cos \left( A+B \right)\cos \left( A-B \right)-{{\cos }^{2}}C \\
& \Rightarrow 1-\cos c\cos \left( A-B \right)-{{\cos }^{2}}C \\
& \Rightarrow 1+\cos C\left( -\cos C-\cos \left( A-B \right) \right) \\
& \Rightarrow 1+\cos C\left( \cos \left( A+B \right)-\cos \left( A-B \right) \right) \\
\end{aligned}$
Now, using the formula from equation (3) in the above equation. Then,
$\begin{aligned}
& 1+\cos C\left( \cos \left( A+B \right)-\cos \left( A-B \right) \right) \\
& \Rightarrow 1+\cos C\left( -2\sin \left( \dfrac{A+B+A-B}{2} \right)\sin \left(
\dfrac{A+B-A+B}{2} \right) \right) \\
& \Rightarrow 1+\cos C\left( -2\sin A\sin B \right) \\
& \Rightarrow 1-2\sin A\sin B\cos C \\
\end{aligned}$
Now, from the above result we can say that cos2A+cos2B−cos2C=1−2sinAsinBcosC.
Thus, L.H.S=R.H.S.
Hence Proved.
Note: Here, the student should first understand what we have to prove in the question and then proceed in a stepwise manner while solving. For making the simplification process smooth, we should also try to make use of trigonometric results like cos(π−θ)=−cosθ for making equations that will help us further in the solution. Moreover, the formulas like cosC+cosD , cosC−cosD and cos2θ should be applied correctly with proper values and avoid making calculation mistakes while solving the problem.