Solveeit Logo

Question

Question: If \(A + B + C = \pi ,n \in {\rm Z}\), then find \(\tan nA + \tan nB + \tan nC\). A) \(0\) B) \(...

If A+B+C=π,nZA + B + C = \pi ,n \in {\rm Z}, then find tannA+tannB+tannC\tan nA + \tan nB + \tan nC.
A) 00
B) 11
C) tannAtannBtannC\tan nA\tan nB\tan nC
D) None of these

Explanation

Solution

Using the sum formula of tan\tan we can solve the question. Also remember tan\tan has zero values for integer multiples of π\pi . Here also it is given that nn belongs to the set of Integers. So combining all these we have we can find the answer of the question.

Formula used:
For any integer n,tannπ=0n,\tan n\pi = 0
For any A,B,CA,B,C, we have,
tan(A+B+C)=tanA+tanB+tanCtanAtanBtanC1tanAtanBtanBtanCtanAtanC\tan (A + B + C) = \dfrac{{\tan A + \tan B + \tan C - \tan A\tan B\tan C}}{{1 - \tan A\tan B - \tan B\tan C - \tan A\tan C}}

Complete step-by-step answer:
In the question it is given that
A+B+C=πA + B + C = \pi and nZn \in {\rm Z} (Set of integers)
Multiplying both sides of the above equation by nn we get,
n(A+B+C)=nA+nB+nC=nπ\Rightarrow n(A + B + C) = nA + nB + nC = n\pi
We can apply tan\tan on both sides.
tan(nA+nB+nC)=tannπ\Rightarrow \tan (nA + nB + nC) = \tan n\pi
We know tan\tan takes value zero on integer multiples of π\pi .
So, we have tannπ=0,nZ\tan n\pi = 0,n \in {\rm Z}.
tan(nA+nB+nC)=0(i)\Rightarrow \tan (nA + nB + nC) = 0 - - - (i)
For any A,B,CA,B,C, we have,
tan(A+B+C)=tanA+tanB+tanCtanAtanBtanC1tanAtanBtanBtanCtanAtanC\tan (A + B + C) = \dfrac{{\tan A + \tan B + \tan C - \tan A\tan B\tan C}}{{1 - \tan A\tan B - \tan B\tan C - \tan A\tan C}}
Using this we get,
tan(nA+nB+nC)=tannA+tannB+tannCtannAtannBtannC1tannAtannBtannBtannCtannAtannC\tan (nA + nB + nC) = \dfrac{{\tan nA + \tan nB + \tan nC - \tan nA\tan nB\tan nC}}{{1 - \tan nA\tan nB - \tan nB\tan nC - \tan nA\tan nC}}
Substituting the above expression in equation (i)(i), we have,
tannA+tannB+tannCtannAtannBtannC1tannAtannBtannBtannCtannAtannC=0\dfrac{{\tan nA + \tan nB + \tan nC - \tan nA\tan nB\tan nC}}{{1 - \tan nA\tan nB - \tan nB\tan nC - \tan nA\tan nC}} = 0
This means the numerator of the above equation is zero.
tannA+tannB+tannC=tannAtannBtannC\Rightarrow \tan nA + \tan nB + \tan nC = \tan nA\tan nB\tan nC
Therefore, the answer is option C.

Additional information:
If there were only AA and BB, then tanA+B=tanA+tanB1tanAtanB\tan A + B = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
The equation of A,BA,B and CC is actually derived from this one by combining two at a time.
There is also another formula for the case of subtraction.
tan(AB)=tanAtanB1+tanAtanB\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}
This formula too can be extended to the sum of three variables.

Note: Since tan\tan takes the value zero on integer multiples of π\pi , we could reduce the expression to get the answer. For sin\sin and cos\cos it is not the case. They do not take value zero on every integer multiple of π\pi . So while doing trigonometric operations we should be aware and careful about the values taken by the functions.