Solveeit Logo

Question

Question: If \[A + B + C = \pi \] and \[\cos A = \cos B\cos C\], then \[\tan B\tan C\] is equal to A) \[\dfr...

If A+B+C=πA + B + C = \pi and cosA=cosBcosC\cos A = \cos B\cos C, then tanBtanC\tan B\tan C is equal to
A) 12\dfrac{1}{2}
B) 22
C) 11
D) 12 - \dfrac{1}{2}

Explanation

Solution

Here, we will first find the value of AA in terms of B,CB,C. Then we will put the value of AA in the equation cosA=cosBcosC\cos A = \cos B\cos C. Then we will use the trigonometry formula to expand the equation. Then we will solve the equation to get the value of tanBtanC\tan B\tan C.

Complete step by step solution:
It is given that A+B+C=πA + B + C = \pi and cosA=cosBcosC\cos A = \cos B\cos C.
First, we will take the equation cosA=cosBcosC\cos A = \cos B\cos C and put the value of AA in terms of the B,CB,C with the help of the equation A+B+C=πA + B + C = \pi . Therefore, we get
A=π(B+C)\Rightarrow A = \pi - \left( {B + C} \right)
Now substituting the value of AA in the equation cosA=cosBcosC\cos A = \cos B\cos C, we get
cos(π(B+C))=cosBcosC\Rightarrow \cos \left( {\pi - \left( {B + C} \right)} \right) = \cos B\cos C
We can see that the function cos(π(B+C))\cos \left( {\pi - \left( {B + C} \right)} \right) is in the second quadrant and we know that the value of the cos function is negative in the second quadrant i.e. cos(πθ)=cosθ\cos \left( {\pi - \theta } \right) = - \cos \theta . Therefore, we get
cos(B+C)=cosBcosC\Rightarrow - \cos \left( {B + C} \right) = \cos B\cos C
Now we will use the formula cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B. Therefore, we get
(cosBcosCsinBsinC)=cosBcosC\Rightarrow - \left( {\cos B\cos C - \sin B\sin C} \right) = \cos B\cos C
Now we will solve this equation to get the value of tanBtanC\tan B\tan C. Therefore, we get
cosBcosC+sinBsinC=cosBcosC\Rightarrow - \cos B\cos C + \sin B\sin C = \cos B\cos C
sinBsinC=cosBcosC+cosBcosC=2cosBcosC\Rightarrow \sin B\sin C = \cos B\cos C + \cos B\cos C = 2\cos B\cos C
Now we will take the cos terms on the other side of the equation, we get
sinBsinCcosBcosC=2\Rightarrow \dfrac{{\sin B\sin C}}{{\cos B\cos C}} = 2
We know that the ratio of the sine to the cos is equals to the tan function i.e. sinθcosθ=tanθ\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta , we get
tanBtanC=2\Rightarrow \tan B\tan C = 2
Hence, tanBtanC\tan B\tan C is equal to 2.

So, option B is the correct option.

Note:
We should know the different properties of the trigonometric function. In the first quadrant all the functions i.e. sin, cos, tan, cot, sec, cosec is positive. In the second quadrant, only the sin and cosec function are positive and all the other functions are negative. In the third quadrant, only tan and cot function is positive and in the fourth quadrant, only cos and sec function is positive. Also, we should know the basic properties of the trigonometric functions and basic trigonometric formulas.
sin(A+B)=sinAcosB+cosAsinBsin(AB)=sinAcosBcosAsinBcos(A+B)=cosAcosBsinAsinB cos(AB)=cosAcosB+sinAsinB\begin{array}{l}\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\\\\\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\\\\\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\\\ \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\end{array}