Solveeit Logo

Question

Question: If \(a,b,c \in R\) , \(x = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab\) then prove that \({x^3} + {y^3...

If a,b,cRa,b,c \in R , x=a2bc,y=b2ca,z=c2abx = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab then prove that x3+y3+z33xyz{x^3} + {y^3} + {z^3} - 3xyz is a perfect square.

Explanation

Solution

Decompose x3+y3+z33xyz{x^3} + {y^3} + {z^3} - 3xyz using the formula {x^3} + {y^3} + {z^3} - 3xyz = \dfrac{1}{2}\left( {x + y + z} \right)\left\\{ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right\\} . And substitute the values of x, y, z given in the question whenever required to prove it as a perfect square.

Complete step-by-step solution:
We are given that a,b,cRa,b,c \in R and x=a2bc,y=b2ca,z=c2abx = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab . We have to prove that x3+y3+z33xyz{x^3} + {y^3} + {z^3} - 3xyz is a perfect square.
{x^3} + {y^3} + {z^3} - 3xyz = \dfrac{1}{2}\left( {x + y + z} \right)\left\\{ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right\\}
Substitute the values of x, y, z given in the question as x=a2bc,y=b2ca,z=c2abx = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab in x+y+zx + y + z
x+y+z=a2bc+b2ca+c2ab =12×2(a2bc+b2ca+c2ab) =12(2a22bc+2b22ca+2c22ab) =12(a22ab+b2+b22bc+c2+a22ac+c2) =12((ab)2+(bc)2+(ca)2) ((ab)2=a22ab+b2)  x + y + z = {a^2} - bc + {b^2} - ca + {c^2} - ab \\\ = \dfrac{1}{2} \times 2\left( {{a^2} - bc + {b^2} - ca + {c^2} - ab} \right) \\\ = \dfrac{1}{2}\left( {2{a^2} - 2bc + 2{b^2} - 2ca + 2{c^2} - 2ab} \right) \\\ = \dfrac{1}{2}\left( {{a^2} - 2ab + {b^2} + {b^2} - 2bc + {c^2} + {a^2} - 2ac + {c^2}} \right) \\\ = \dfrac{1}{2}\left( {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right) \\\ \left( {\because {{\left( {a - b} \right)}^2} = {a^2} - 2ab + {b^2}} \right) \\\
Substitute the values of x, y, z given in the question as x=a2bc,y=b2ca,z=c2abx = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab in (xy)2{\left( {x - y} \right)^2}
(xy)2=(a2bc(b2ca))2 =(a2bcb2+ca)2 =((a2b2)+c(ab))2 =((a+b)(ab)+c(ab))2 =((a+b+c)(ab))2 =(a+b+c)2(ab)2  {\left( {x - y} \right)^2} = {\left( {{a^2} - bc - \left( {{b^2} - ca} \right)} \right)^2} \\\ = {\left( {{a^2} - bc - {b^2} + ca} \right)^2} \\\ = {\left( {\left( {{a^2} - {b^2}} \right) + c\left( {a - b} \right)} \right)^2} \\\ = {\left( {\left( {a + b} \right)\left( {a - b} \right) + c\left( {a - b} \right)} \right)^2} \\\ = {\left( {\left( {a + b + c} \right)\left( {a - b} \right)} \right)^2} \\\ = {\left( {a + b + c} \right)^2}{\left( {a - b} \right)^2} \\\
Substitute the values of x, y, z given in the question as x=a2bc,y=b2ca,z=c2abx = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab in (yz)2{\left( {y - z} \right)^2}
(yz)2=(b2ca(c2ab))2 =(b2cac2+ab)2 =((b2c2)+a(bc))2 =((b+c)(bc)+a(bc))2 =((a+b+c)(bc))2 =(a+b+c)2(bc)2  {\left( {y - z} \right)^2} = {\left( {{b^2} - ca - \left( {{c^2} - ab} \right)} \right)^2} \\\ = {\left( {{b^2} - ca - {c^2} + ab} \right)^2} \\\ = {\left( {\left( {{b^2} - {c^2}} \right) + a\left( {b - c} \right)} \right)^2} \\\ = {\left( {\left( {b + c} \right)\left( {b - c} \right) + a\left( {b - c} \right)} \right)^2} \\\ = {\left( {\left( {a + b + c} \right)\left( {b - c} \right)} \right)^2} \\\ = {\left( {a + b + c} \right)^2}{\left( {b - c} \right)^2} \\\
Substitute the values of x, y, z given in the question as x=a2bc,y=b2ca,z=c2abx = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab in (zx)2{\left( {z - x} \right)^2}
(zx)2=(c2ab(a2bc))2 =(c2aba2+bc)2 =((c2a2)+b(ca))2 =((c+a)(ca)+b(ca))2 =((a+b+c)(ca))2 =(a+b+c)2(ca)2  {\left( {z - x} \right)^2} = {\left( {{c^2} - ab - \left( {{a^2} - bc} \right)} \right)^2} \\\ = {\left( {{c^2} - ab - {a^2} + bc} \right)^2} \\\ = {\left( {\left( {{c^2} - {a^2}} \right) + b\left( {c - a} \right)} \right)^2} \\\ = {\left( {\left( {c + a} \right)\left( {c - a} \right) + b\left( {c - a} \right)} \right)^2} \\\ = {\left( {\left( {a + b + c} \right)\left( {c - a} \right)} \right)^2} \\\ = {\left( {a + b + c} \right)^2}{\left( {c - a} \right)^2} \\\
Now substitute the obtained results in {x^3} + {y^3} + {z^3} - 3xyz = \dfrac{1}{2}\left( {x + y + z} \right)\left\\{ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right\\}
The value of x+y+z=12((ab)2+(bc)2+(ca)2)x + y + z = \dfrac{1}{2}\left( {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right)
{x^3} + {y^3} + {z^3} - 3xyz = \dfrac{1}{2}\left( {x + y + z} \right)\left\\{ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right\\} \\\ x + y + z = \dfrac{1}{2} \times \dfrac{1}{2}\left\\{ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right\\}\left\\{ {{{\left( {a + b + c} \right)}^2}{{\left( {a - b} \right)}^2} + {{\left( {a + b + c} \right)}^2}{{\left( {b - c} \right)}^2} + {{\left( {a + b + c} \right)}^2}{{\left( {c - a} \right)}^2}} \right\\} \\\
Take out (a+b+c) common from the second term.
= \dfrac{1}{4} \times \left\\{ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right\\}\left\\{ {{{\left( {a + b + c} \right)}^2}\left( {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right)} \right\\} \\\ = {\left( {\dfrac{{a + b + c}}{2}} \right)^2}{\left\\{ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right\\}^2} \\\ = {\left[ {\left( {\dfrac{{a + b + c}}{2}} \right)\left\\{ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right\\}} \right]^2} \\\
Therefore, x3+y3+z33xyz{x^3} + {y^3} + {z^3} - 3xyz can be written as {\left[ {\left( {\dfrac{{a + b + c}}{2}} \right)\left\\{ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right\\}} \right]^2} which is a perfect square.

Note: In mathematics, a square number or a perfect square is an integer that is the square of another integer; in other words, it is the product of some integer with itself. For example, 16 is a square number, since it can be written as 4×4. Square numbers are non-negative. The square of a number is always positive