Solveeit Logo

Question

Question: If \[a,b,c\in {{R}^{+}}\] such that \[a+b+c=18\] , then find the maximum value of \[{{a}^{2}}{{b}^{3...

If a,b,cR+a,b,c\in {{R}^{+}} such that a+b+c=18a+b+c=18 , then find the maximum value of a2b3c4{{a}^{2}}{{b}^{3}}{{c}^{4}} .

Explanation

Solution

It is given that A.MG.MA.M\ge G.M such that a+b+c=18a+b+c=18 . We have to find the maximum value of the expression, a2b3c4{{a}^{2}}{{b}^{3}}{{c}^{4}} . The exponents of a,b,a,b, and cc are 2, 3, and 4 respectively. Now, divide a,b,a,b, and cc by 2, 3, and 4 equal parts. We know the property that the arithmetic mean of all real positive numbers is greater than or equal to the geometric mean, A.MG.MA.M\ge G.M . Now, apply the relation A.MG.MA.M\ge G.M for the numbers a2,a2,b3,b3,b3,c4,c4,c4,c4\dfrac{a}{2},\dfrac{a}{2},\dfrac{b}{3},\dfrac{b}{3},\dfrac{b}{3},\dfrac{c}{4},\dfrac{c}{4},\dfrac{c}{4},\dfrac{c}{4} and solve it further to get the maximum value of the expression a2b3c4{{a}^{2}}{{b}^{3}}{{c}^{4}} .

Complete step-by-step answer :
According to the question, it is given that we have three numbers a,b,ca,b,c such that a,b,cR+a,b,c\in {{R}^{+}} .
The summation of these three numbers is 18. So,
a+b+c=18a+b+c=18 ……………………………………….(1)
We have to find the maximum value of a2b3c4{{a}^{2}}{{b}^{3}}{{c}^{4}} ………………………………………………(2)
From equation (2). We have
The exponent of aa = 2 …………………………………………(3)
The exponent of bb = 3 …………………………………………(4)
The exponent of cc = 4 ………………………………………….(5)
Now, on dividing the number aa into equal parts as of its exponents, we get
a2,a2\dfrac{a}{2},\dfrac{a}{2} ………………………………………(6)
Similarly, on dividing the number bb into equal parts as of its exponents, we get
b3,b3,b3\dfrac{b}{3},\dfrac{b}{3},\dfrac{b}{3} ………………………………………(7)
Similarly, on dividing the number cc into equal parts as of its exponents, we get
c4,c4,c4,c4\dfrac{c}{4},\dfrac{c}{4},\dfrac{c}{4},\dfrac{c}{4} ………………………………………(8)
From equation (6), equation (7), and equation (8), we have the numbers
a2,a2,b3,b3,b3,c4,c4,c4,c4\dfrac{a}{2},\dfrac{a}{2},\dfrac{b}{3},\dfrac{b}{3},\dfrac{b}{3},\dfrac{c}{4},\dfrac{c}{4},\dfrac{c}{4},\dfrac{c}{4} …………………………………………….(9)
We know the property that the arithmetic mean of all real positive numbers is greater than or equal to the geometric mean, A.MG.MA.M\ge G.M ……………………………………….(10)
It is given that a,b,ca,b,c are three numbers such that a,b,cR+a,b,c\in {{R}^{+}} .
So, the numbers a2,a2,b3,b3,b3,c4,c4,c4,c4\dfrac{a}{2},\dfrac{a}{2},\dfrac{b}{3},\dfrac{b}{3},\dfrac{b}{3},\dfrac{c}{4},\dfrac{c}{4},\dfrac{c}{4},\dfrac{c}{4} are also positive real numbers. Therefore, here we can apply the property shown in equation (10).
Now, on applying the relation A.MG.MA.M\ge G.M for the positive real numbers a2,a2,b3,b3,b3,c4,c4,c4,c4\dfrac{a}{2},\dfrac{a}{2},\dfrac{b}{3},\dfrac{b}{3},\dfrac{b}{3},\dfrac{c}{4},\dfrac{c}{4},\dfrac{c}{4},\dfrac{c}{4} , we get
a2+a2+b3+b3+b3+c4+c4+c4+c49(a2×a2×b3×b3×b3×c4×c4×c4×c4)19\dfrac{\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b}{3}+\dfrac{b}{3}+\dfrac{b}{3}+\dfrac{c}{4}+\dfrac{c}{4}+\dfrac{c}{4}+\dfrac{c}{4}}{9}\ge {{\left( \dfrac{a}{2}\times \dfrac{a}{2}\times \dfrac{b}{3}\times \dfrac{b}{3}\times \dfrac{b}{3}\times \dfrac{c}{4}\times \dfrac{c}{4}\times \dfrac{c}{4}\times \dfrac{c}{4} \right)}^{\dfrac{1}{9}}}
a+b+c9(a24×b327×c444)19\dfrac{a+b+c}{9}\ge {{\left( \dfrac{{{a}^{2}}}{4}\times \dfrac{{{b}^{3}}}{27}\times \dfrac{{{c}^{4}}}{{{4}^{4}}} \right)}^{\dfrac{1}{9}}} ………………………………………..(11)
From equation (1), we have the value of the expression (a+b+c)\left( a+b+c \right) .
Now, on substituting the expression (a+b+c)\left( a+b+c \right) by 18 in equation (11), we get

& \dfrac{18}{9}\ge {{\left( \dfrac{{{a}^{2}}}{4}\times \dfrac{{{b}^{3}}}{{{3}^{3}}}\times \dfrac{{{c}^{4}}}{{{4}^{4}}} \right)}^{\dfrac{1}{9}}} \\\ & 2\ge {{\left( \dfrac{{{a}^{2}}{{b}^{3}}{{c}^{4}}}{{{3}^{3}}\times {{4}^{5}}} \right)}^{\dfrac{1}{9}}} \\\ & {{2}^{9}}\ge \left( \dfrac{{{a}^{2}}{{b}^{3}}{{c}^{4}}}{{{3}^{3}}\times {{4}^{5}}} \right) \\\ & {{2}^{9}}\times {{3}^{3}}\times {{4}^{5}}\ge \left( {{a}^{2}}{{b}^{3}}{{c}^{4}} \right) \\\ & {{2}^{9}}\times {{3}^{3}}\times {{\left( {{2}^{2}} \right)}^{5}}\ge \left( {{a}^{2}}{{b}^{3}}{{c}^{4}} \right) \\\ & {{2}^{9}}\times {{3}^{3}}\times {{2}^{10}}\ge \left( {{a}^{2}}{{b}^{3}}{{c}^{4}} \right) \\\ & {{2}^{19}}{{3}^{3}}\ge \left( {{a}^{2}}{{b}^{3}}{{c}^{4}} \right) \\\ \end{aligned}$$ We can see that the expression $$\left( {{a}^{2}}{{b}^{3}}{{c}^{4}} \right)$$ is always less than or equal to $${{2}^{19}}{{3}^{3}}$$ . Therefore, when the expression $$\left( {{a}^{2}}{{b}^{3}}{{c}^{4}} \right)$$ has its value equal to $${{2}^{19}}{{3}^{3}}$$ , then it will have its maximum value. **Hence, the maximum value of the expression $$\left( {{a}^{2}}{{b}^{3}}{{c}^{4}} \right)$$ is $${{2}^{19}}{{3}^{3}}$$ .** **Note** : Whenever this type of question appears where we have to find the maximum value of an expression having real positive numbers. The best way to solve this question, first of all, divide the numbers into equal parts as of its exponents. Now, we know that $$A.M\ge G.M$$ for all real positive numbers. So, always think to apply the relation $$A.M\ge G.M$$ .