Solveeit Logo

Question

Question: If \(a,b,c\) denotes the lengths of the sides of a triangle opposite to angles \(A,B,C\) respectivel...

If a,b,ca,b,c denotes the lengths of the sides of a triangle opposite to angles A,B,CA,B,C respectively in ΔABC\Delta ABC, then the correct relation among a,b,c,A,B,Ca,b,c,A,B,C is given by which of the following option?
A) (b+c)sin(B+C2)=acosA2(b + c)\sin (\dfrac{{B + C}}{2}) = a\cos \dfrac{A}{2}
B) (bc)cosA2=asin(BC2)(b - c)\cos \dfrac{A}{2} = a\sin (\dfrac{{B - C}}{2})
C) (bc)cosA2=2asin(BC2)(b - c)\cos \dfrac{A}{2} = 2a\sin (\dfrac{{B - C}}{2})
D) (bc)sin(BC2)=acosA2(b - c)\sin (\dfrac{{B - C}}{2}) = a\cos \dfrac{A}{2}

Explanation

Solution

There is a trigonometric relation between sides and angles of a triangle. Using this relation and necessary trigonometric formulas, we can find the answer. Keep in mind angle sum of a triangle is 180180^\circ

Formula used: If a,b,ca,b,c denotes the sides of a triangle opposite to angles A,B,CA,B,C in ΔABC\Delta ABC, then we have,
asinA=bsinB=csinC=k\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k, for some value kk.
For every angle θ\theta , we have,
cos(90θ)=sinθ\cos (90 - \theta ) = \sin \theta
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
For every x,yx,y ,
sinxsiny=2cosx+y2sinxy2\sin x - \sin y = 2\cos \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}
Sum of the angles in a triangle is 180180^\circ .

Complete step-by-step answer:

Given a,b,ca,b,c denotes the sides of a triangle opposite to angles A,B,CA,B,C in ΔABC\Delta ABC,
then we have,
asinA=bsinB=csinC=k\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k, for some value kk.
a=ksinA,b=ksinB,c=ksinC\Rightarrow a = k\sin A,b = k\sin B,c = k\sin C
Consider bca\dfrac{{b - c}}{a}
bca=ksinBksinCksinA=k(sinBsinA)ksinA\Rightarrow \dfrac{{b - c}}{a} = \dfrac{{k\sin B - k\sin C}}{{k\sin A}} = \dfrac{{k(\sin B - \sin A)}}{{k\sin A}}
Cancelling kk from numerator and denominator we have,
bca=sinBsinCsinA\Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin B - \sin C}}{{\sin A}}
For every x,yx,y ,
sinxsiny=2cosx+y2sinxy2\sin x - \sin y = 2\cos \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}
Also, for every angle θ\theta , we have,
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
Using these relations, we get,
bca=sinBsinCsinA=2cosB+C2sinBC22sinA2cosA2\Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin B - \sin C}}{{\sin A}} = \dfrac{{2\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}
Cancelling 22 from numerator and denominator we have,
bca=cosB+C2sinBC2sinA2cosA2(i)\Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{\sin \dfrac{A}{2}\cos \dfrac{A}{2}}} - - - (i)
Now consider ABC\vartriangle ABC. Here A,B,CA,B,C are the three angles.
A+B+C=180\Rightarrow A + B + C = 180
Rearranging the terms, we get,
B+C=180A\Rightarrow B + C = 180 - A
Dividing both sides by 22 we have,
B+C2=180A2=90A2\Rightarrow \dfrac{{B + C}}{2} = \dfrac{{180 - A}}{2} = 90 - \dfrac{A}{2}
cos(B+C2)=cos(90A2)\Rightarrow \cos (\dfrac{{B + C}}{2}) = \cos (90 - \dfrac{A}{2})
But cos(90θ)=sinθ\cos (90 - \theta ) = \sin \theta
cos(B+C2)=sinA2\Rightarrow \cos (\dfrac{{B + C}}{2}) = \sin \dfrac{A}{2}
Substituting this in (i)(i) we get,
bca=sinA2sinBC2sinA2cosA2\Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin \dfrac{A}{2}\sin \dfrac{{B - C}}{2}}}{{\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}
Cancelling sinA2\sin \dfrac{A}{2} from numerator and denominator we have,
bca=sinBC2cosA2\Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin \dfrac{{B - C}}{2}}}{{\cos \dfrac{A}{2}}}
Cross multiplying, we get,
(bc)cosA2=asinBC2\Rightarrow (b - c)\cos \dfrac{A}{2} = a\sin \dfrac{{B - C}}{2}

So, the correct answer is “Option B”.

Note: Here we considered bca\dfrac{{b - c}}{a} by looking into the options. Since there is no further clue from the question it is advisable to check the options and thus solve the answer. Further simplification should be done accordingly to reach the answer.AND remember important trigonometric formulas and identities for solving these types of problems.