Solveeit Logo

Question

Question: If (a, b), (c, d), (e, ƒ) are the vertices of a triangle such that a, c, e are in G.P. with common r...

If (a, b), (c, d), (e, ƒ) are the vertices of a triangle such that a, c, e are in G.P. with common ratio r and b, d, ƒ are in G.P. with common ratio s, then the area of the triangle is-

A

ab2\frac{ab}{2} (r + 1) (s + 2) (s + r)

B

ab2\frac{ab}{2} (r – 1) (s – r) (s – 1)

C

ab2\frac{ab}{2} (r – 1) (s + 1) (s – r)

D

ab2\frac{ab}{2} (r + 1) (s + 1) (s – r)

Answer

ab2\frac{ab}{2} (r – 1) (s – r) (s – 1)

Explanation

Solution

Here, c = ar, e = ar2, d = bs, ƒ = bs2

\ D (Area of triangle) = 12\frac { 1 } { 2 } ab1cd1eƒ1\left| \begin{matrix} a & b & 1 \\ c & d & 1 \\ e & ƒ & 1 \end{matrix} \right|

= 12\frac{1}{2}ab (s – r) (s – 1) (r – 1).